On Rayleigh-Taylor interfacial mixing

Evgeny E. Meshkov, Snezhana Abarzhi

Research output: Contribution to specialist publicationArticle

Abstract

The Rayleigh-Taylor instability develops when fluids are accelerated counter to their density gradients; intense interfacial fluid mixing ensues with time. The Rayleigh-Taylor mixing controls a broad range of processes in fluids, plasmas, materials, at astrophysical and at atomic scales. In this perspective paper we briefly review theoretical and experimental approaches, and apply theory and experiment to investigate order and disorder in Rayleigh-Taylor flows. The theory finds that properties of heterogeneous anisotropic accelerated Rayleigh-Taylor mixing depart from those of homogeneous isotropic inertial turbulence, including strong correlations, weak fluctuations, and sensitivity to deterministic conditions. The experiment unambiguously observes the heterogeneity and anisotropy of Rayleigh-Taylor mixing at very high Reynolds numbers, and the stabilizing effects of acceleration and accelerated shear on the interfacial dynamics. The theory and the experiment agree with one another and evince that Rayleigh- Taylor mixing may exhibit order and laminarize, similarly to other accelerated flows, thus opening new perspectives for research of complex processes in nature and technology.
Original languageEnglish
Specialist publicationarXiv preprint
Publication statusPublished - 2019

Fingerprint

fluids
Taylor instability
high Reynolds number
astrophysics
counters
turbulence
disorders
shear
gradients
anisotropy
sensitivity

Cite this

@misc{1b3ca2ff455d49b18824dbceb055a94a,
title = "On Rayleigh-Taylor interfacial mixing",
abstract = "The Rayleigh-Taylor instability develops when fluids are accelerated counter to their density gradients; intense interfacial fluid mixing ensues with time. The Rayleigh-Taylor mixing controls a broad range of processes in fluids, plasmas, materials, at astrophysical and at atomic scales. In this perspective paper we briefly review theoretical and experimental approaches, and apply theory and experiment to investigate order and disorder in Rayleigh-Taylor flows. The theory finds that properties of heterogeneous anisotropic accelerated Rayleigh-Taylor mixing depart from those of homogeneous isotropic inertial turbulence, including strong correlations, weak fluctuations, and sensitivity to deterministic conditions. The experiment unambiguously observes the heterogeneity and anisotropy of Rayleigh-Taylor mixing at very high Reynolds numbers, and the stabilizing effects of acceleration and accelerated shear on the interfacial dynamics. The theory and the experiment agree with one another and evince that Rayleigh- Taylor mixing may exhibit order and laminarize, similarly to other accelerated flows, thus opening new perspectives for research of complex processes in nature and technology.",
author = "Meshkov, {Evgeny E.} and Snezhana Abarzhi",
year = "2019",
language = "English",
journal = "arXiv preprint",
publisher = "Cornell University, Ithaca, NY",

}

On Rayleigh-Taylor interfacial mixing. / Meshkov, Evgeny E.; Abarzhi, Snezhana.

In: arXiv preprint, 2019.

Research output: Contribution to specialist publicationArticle

TY - GEN

T1 - On Rayleigh-Taylor interfacial mixing

AU - Meshkov, Evgeny E.

AU - Abarzhi, Snezhana

PY - 2019

Y1 - 2019

N2 - The Rayleigh-Taylor instability develops when fluids are accelerated counter to their density gradients; intense interfacial fluid mixing ensues with time. The Rayleigh-Taylor mixing controls a broad range of processes in fluids, plasmas, materials, at astrophysical and at atomic scales. In this perspective paper we briefly review theoretical and experimental approaches, and apply theory and experiment to investigate order and disorder in Rayleigh-Taylor flows. The theory finds that properties of heterogeneous anisotropic accelerated Rayleigh-Taylor mixing depart from those of homogeneous isotropic inertial turbulence, including strong correlations, weak fluctuations, and sensitivity to deterministic conditions. The experiment unambiguously observes the heterogeneity and anisotropy of Rayleigh-Taylor mixing at very high Reynolds numbers, and the stabilizing effects of acceleration and accelerated shear on the interfacial dynamics. The theory and the experiment agree with one another and evince that Rayleigh- Taylor mixing may exhibit order and laminarize, similarly to other accelerated flows, thus opening new perspectives for research of complex processes in nature and technology.

AB - The Rayleigh-Taylor instability develops when fluids are accelerated counter to their density gradients; intense interfacial fluid mixing ensues with time. The Rayleigh-Taylor mixing controls a broad range of processes in fluids, plasmas, materials, at astrophysical and at atomic scales. In this perspective paper we briefly review theoretical and experimental approaches, and apply theory and experiment to investigate order and disorder in Rayleigh-Taylor flows. The theory finds that properties of heterogeneous anisotropic accelerated Rayleigh-Taylor mixing depart from those of homogeneous isotropic inertial turbulence, including strong correlations, weak fluctuations, and sensitivity to deterministic conditions. The experiment unambiguously observes the heterogeneity and anisotropy of Rayleigh-Taylor mixing at very high Reynolds numbers, and the stabilizing effects of acceleration and accelerated shear on the interfacial dynamics. The theory and the experiment agree with one another and evince that Rayleigh- Taylor mixing may exhibit order and laminarize, similarly to other accelerated flows, thus opening new perspectives for research of complex processes in nature and technology.

M3 - Article

JO - arXiv preprint

JF - arXiv preprint

ER -