Ocean currents trigger rogue waves

Alessandro Toffoli, Guillaume Ducrozet, Takuji Waseda, Miguel Onorato, Maryam Abdolahpour, Filippo Nelli

Research output: Chapter in Book/Conference paperConference paperpeer-review

2 Citations (Scopus)

Abstract

Inhomogeneous media can change the nonlinear properties of waves propagating on them. In the ocean, this phenomenon can be observed when waves travel on a surface current. In the case of negative horizontal velocity gradients (i.e. an accelerating opposing current or a decelerating following current), waves shorten and heighten, enhancing wave steepness. As a result, a nonlinear mechanism known as modulational instability develops, leading to the formation of large-amplitude waves (the so-called rogue waves), even if they would otherwise be unexpected. Laboratory experiments and numerical simulations with a current-modified version of the Euler equations are presented to assess the role of an opposing current in changing the statistical properties of unidirectional random wave fields. Results demonstrate in a consistent and robust manner that an opposing current induces a sharp and rapid transition from weakly to strongly non-Gaussian properties with a consequent increase of the probability of occurrence of rogue waves. Agreement with numerical simulations confirms that this transformation can be attributed to quasi-resonant nonlinear interactions triggered by the background current.

Original languageEnglish
Title of host publicationProceedings of the 29th International Ocean and Polar Engineering Conference, ISOPE 2019
EditorsJin S. Chung, Odd M. Akselsen, HyunWoo Jin, Hiroyasu Kawai, Yongwon Lee, Dmitri Matskevitch, Suak Ho Van, Decheng Wan, Alan M. Wang, Satoru Yamaguchi
PublisherInternational Society of Offshore and Polar Engineers
Pages2453-2459
Number of pages7
Volume3
ISBN (Print)9781880653852
Publication statusPublished - 2019
Event29th International Ocean and Polar Engineering Conference, ISOPE 2019 - Honolulu, United States
Duration: 16 Jun 201921 Jun 2019

Publication series

NameProceedings of the International Offshore and Polar Engineering Conference
Volume3
ISSN (Print)1098-6189
ISSN (Electronic)1555-1792

Conference

Conference29th International Ocean and Polar Engineering Conference, ISOPE 2019
Country/TerritoryUnited States
CityHonolulu
Period16/06/1921/06/19

Fingerprint

Dive into the research topics of 'Ocean currents trigger rogue waves'. Together they form a unique fingerprint.

Cite this