TY - JOUR
T1 - Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation
AU - Duan, Xiaoguang
AU - Ao, Zhimin
AU - Zhou, Li
AU - Sun, Hongqi
AU - Wang, Guoxiu
AU - Wang, Shaobin
N1 - Funding Information:
This work is financially supported by Australian Research Council under project No. DP130101319. H.S. is grateful of Curtin Research Fellowship.
Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/7/5
Y1 - 2016/7/5
N2 - Metal-free activation of superoxides provides an efficient and environmentally benign strategy for heterogeneous catalytic oxidation. In this study, nanocarbons with varying carbon-conjugation structures and functional groups were investigated for peroxymonosulfate (PMS) activation. It was discovered that radical and nonradical oxidations could occur on different carbocatalysts depending on the carbon structure. Radical oxidation occurs exclusively on MWCNTs and CMK-3, similar to a metal oxide, MnO2. Both radical and nonradical oxidations are very pronounced in nanodiamond (AND-900)/PMS whilst nonradical oxidation is dominated in reduced graphene oxide (rGO-900)/PMS. Density functional theory (DFT) calculations were employed to explore the PMS adsorption and OO bond activation on the different carbon configurations for an in-depth probe of the activation mechanism. The intact sp2-conjugated π system in MWCNTs and electron-rich ketonic groups (as Lewis basic sites) in CMK-3 can stimulate PMS dissociation to generate SO4- and OH, similar to metal-based catalysts. However, the defective edges at the boundary of carbon network are able to facilitate the organic degradation without generation of the reactive radicals, which is well supported by both experiments and the DFT calculation. The emerging nonradical oxidation induced by the carbocatalysis is superior to the radical oxidation on most metal oxides for effective degradation of various organics. The influences of solution pH, various anions (H2PO42-, HCO3- and Cl-) and background organic matters (humic acid) on the nonradical oxidation were further evaluated. The nonradical oxidation on carbocatalysts can be utilized as a green and effective oxidation strategy for aqueous environmental remediation and nonaqueous phase oxidation.
AB - Metal-free activation of superoxides provides an efficient and environmentally benign strategy for heterogeneous catalytic oxidation. In this study, nanocarbons with varying carbon-conjugation structures and functional groups were investigated for peroxymonosulfate (PMS) activation. It was discovered that radical and nonradical oxidations could occur on different carbocatalysts depending on the carbon structure. Radical oxidation occurs exclusively on MWCNTs and CMK-3, similar to a metal oxide, MnO2. Both radical and nonradical oxidations are very pronounced in nanodiamond (AND-900)/PMS whilst nonradical oxidation is dominated in reduced graphene oxide (rGO-900)/PMS. Density functional theory (DFT) calculations were employed to explore the PMS adsorption and OO bond activation on the different carbon configurations for an in-depth probe of the activation mechanism. The intact sp2-conjugated π system in MWCNTs and electron-rich ketonic groups (as Lewis basic sites) in CMK-3 can stimulate PMS dissociation to generate SO4- and OH, similar to metal-based catalysts. However, the defective edges at the boundary of carbon network are able to facilitate the organic degradation without generation of the reactive radicals, which is well supported by both experiments and the DFT calculation. The emerging nonradical oxidation induced by the carbocatalysis is superior to the radical oxidation on most metal oxides for effective degradation of various organics. The influences of solution pH, various anions (H2PO42-, HCO3- and Cl-) and background organic matters (humic acid) on the nonradical oxidation were further evaluated. The nonradical oxidation on carbocatalysts can be utilized as a green and effective oxidation strategy for aqueous environmental remediation and nonaqueous phase oxidation.
KW - Carbocatalysis
KW - DFT
KW - Nonradical oxidation
KW - Peroxymonosulfate activation
KW - Radical scavenger
UR - http://www.scopus.com/inward/record.url?scp=84956934204&partnerID=8YFLogxK
U2 - 10.1016/j.apcatb.2016.01.059
DO - 10.1016/j.apcatb.2016.01.059
M3 - Article
AN - SCOPUS:84956934204
SN - 0926-3373
VL - 188
SP - 98
EP - 105
JO - Applied Catalysis B: Environmental
JF - Applied Catalysis B: Environmental
ER -