Observations of energy transfer mechanisms associated with internal waves

Evelio Andres Gomez Giraldo

    Research output: ThesisDoctoral Thesis

    244 Downloads (Pure)


    [Truncated abstract] Internal waves redistribute energy and momentum in stratified lakes and constitute the path through which the energy that is introduced at the lake scale is cascaded down to the turbulent scales where mixing and dissipation take place. This research, based on intensive field data complemented with numerical simulations, covers several aspects of the energy flux path ranging from basin-scale waves with periods of several hours to high frequency waves with periods of few minutes. It was found that, at the basin-scale level, the horizontal shape of the lake at the level of the metalimnion controls the period and modal structure of the basin-scale natural modes, conforming to the dispersion relationship of internal waves in circular basins. The sloping bottom, in turn, produces local intensification of the wave motion due to focusing of internal wave rays over near-critical slopes, providing hot spots for the degeneration of the basin-scale waves due to shear instabilities, nonlinear processes and dissipation. Different types of high-frequency phenomena were observed in a stratified lake under different forcing conditions. The identification of the generation mechanisms revealed how these waves extract energy from the mean flow and the basin-scale waves. The changes to the stratification show that such waves contribute to mixing in different ways . . . Detailed field observations were used to develop a comprehensive description of an undocumented energy flux mechanism in which shear-instabilities with significant amplitudes away from the generation level are produced in the surface layer due to the shear generated by the wind. The vertical structure of these instabilities is such that the growing wave-related fluctuations strain the density field in the metalimnion triggering secondary instabilities. These instabilities also transport energy vertically to the thermocline where they transfer energy back to the mean flow through interaction with the background shear.
    Original languageEnglish
    QualificationDoctor of Philosophy
    Publication statusUnpublished - 2007


    Dive into the research topics of 'Observations of energy transfer mechanisms associated with internal waves'. Together they form a unique fingerprint.

    Cite this