Abstract
Salient and tombolo are common features found in the lee of detached breakwaters. The empirical parabolic bay shape equation (PBSE) can be applied when their planform is fully developed, whereas numerical model is required to simulate the dynamic shoreline evolution prior to the planform reaching static equilibrium. This paper reports the excellent performance of PBSE through the comparison with labaratory results and the development of a numerical model for dynamic shoreline change that utilizes the concept of PBSE and equilibrium beach profile. Formulation proposed for sediment transport rate is theoretically compared with that in GENESIS. The governing equation for the combined shoreline response model is based on the one-line beach model, which includes shoreline changes owing to longshore and cross-shore sediment transport. Finally, numerical results reveal, by comparing with an experimental case in the laboratory, that the model is adequate to successively simulating the dynamic evolutions of the shoreline behind a detached breakwater.
Original language | English |
---|---|
Title of host publication | ASME Proceedings: Ocean Engineering |
Place of Publication | Norway |
Publisher | ASME International |
Pages | V07AT06A036 |
Number of pages | 9 |
Volume | 7A-2017 |
ISBN (Electronic) | 9780791857731 |
DOIs | |
Publication status | Published - 2017 |
Event | ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2017 - Trondheim, Norway Duration: 25 Jun 2017 → 30 Jun 2017 |
Conference
Conference | ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2017 |
---|---|
Country/Territory | Norway |
City | Trondheim |
Period | 25/06/17 → 30/06/17 |