Projects per year
Abstract
We prove that nonlocal minimal graphs in the plane exhibit generically stickiness effects and boundary discontinuities. More precisely, we show that if a nonlocal minimal graph in a slab is continuous up to the boundary, then arbitrarily small perturbations of the faraway data produce boundary discontinuities. Hence, either a nonlocal minimal graph is discontinuous at the boundary, or a small perturbation of the prescribed conditions produces boundary discontinuities. The proof relies on a sliding method combined with a fine boundary regularity analysis, based on a discontinuity/smoothness alternative. Namely, we establish that nonlocal minimal graphs are either discontinuous at the boundary or their derivative is Hölder continuous up to the boundary. In this spirit, we prove that the boundary regularity of nonlocal minimal graphs in the plane “jumps” from discontinuous to C^{1} ^{,} ^{γ}, with no intermediate possibilities allowed. In particular, we deduce that the nonlocal curvature equation is always satisfied up to the boundary. As an interesting byproduct of our analysis, one obtains a detailed understanding of the “switch” between the regime of continuous (and hence differentiable) nonlocal minimal graphs to that of discontinuous (and hence with differentiable inverse) ones.
Original language  English 

Pages (fromto)  20052063 
Number of pages  59 
Journal  Communications in Mathematical Physics 
Volume  376 
Issue number  3 
DOIs  
Publication status  Published  Jun 2020 
Fingerprint
Dive into the research topics of 'Nonlocal Minimal Graphs in the Plane are Generically Sticky'. Together they form a unique fingerprint.Projects
 2 Finished

Partial Differential Equations, free boundaries and applications
30/11/18 → 30/11/22
Project: Research
