Nonlinear dynamical analysis of GNSS data: quantification, precursors and synchronisation

Bruce Hobbs, Alison Ord

    Research output: Contribution to journalReview article

    6 Citations (Scopus)
    289 Downloads (Pure)

    Abstract

    The goal of any nonlinear dynamical analysis of a data series is to extract features of the dynamics of the underlying physical and chemical processes that produce that spatial pattern or time series; a by-product is to characterise the signal in terms of quantitative measures. In this paper, we briefly review the methodology involved in nonlinear analysis and explore time series for GNSS crustal displacements with a view to constraining the dynamics of the underlying tectonic processes responsible for the kinematics. We use recurrence plots and their quantification to extract the invariant measures of the tectonic system including the embedding dimension, the maximum Lyapunov exponent and the entropy and characterise the system using recurrence quantification analysis (RQA). These measures are used to develop a data model for some GNSS data sets in New Zealand. The resulting dynamical model is tested using nonlinear prediction algorithms. The behaviours of some RQA measures are shown to act as precursors to major jumps in crustal displacement rate. We explore synchronisation using cross- and joint-recurrence analyses between stations and show that generalised synchronisation occurs between GNSS time series separated by up to 600 km. Synchronisation between stations begins up to 250 to 400 days before a large displacement event and decreases immediately before the event. The results are used to speculate on the coupled processes that may be responsible for the tectonics of the observed crustal deformations and that are compatible with the results of nonlinear analysis. The overall aim is to place constraints on the nature of the global attractor that describes plate motions on the Earth. [Figure not available: see fulltext.].

    Original languageEnglish
    Article number36
    JournalProgress in Earth and Planetary Science
    Volume5
    Issue number1
    DOIs
    Publication statusPublished - 1 Dec 2018

    Fingerprint Dive into the research topics of 'Nonlinear dynamical analysis of GNSS data: quantification, precursors and synchronisation'. Together they form a unique fingerprint.

  • Cite this