New insight into the relation between star formation activity and dust content in galaxies

Elisabete da Cunha, Celine Eminian, Stéphane Charlot, Jérémy Blaizot

Research output: Contribution to journalArticlepeer-review

132 Citations (Scopus)

Abstract

We assemble a sample of 3258 low-redshift galaxies from the Sloan Digital Sky Survey Data Release 6 with complementary photometric observations by the Galaxy Evolution Explorer, the Two Micron All Sky Survey and the Infrared Astronomical Satellite at far-ultraviolet and infrared wavelengths. We use a recent, simple but physically motivated model to interpret the observed spectral energy distributions of the galaxies in this sample in terms of statistical constraints on physical parameters describing the star formation history and dust content. The focus on a subsample of 1658 galaxies with highest signal-to-noise ratio observations enables us to investigate most clearly several strong correlations between various derived physical properties of galaxies. In particular, we find that the typical dust mass Md of a galaxy forming stars at a rate ψ can be estimated remarkably well using the formula over at least three orders of magnitude in both quantities. We also find that the dust-to-stellar mass ratio, the ratio of dust mass to star formation rate and the fraction of dust luminosity contributed by the diffuse interstellar medium (ISM) all correlate strongly with specific star formation rate. A comparison with recent models of chemical and dust evolution of galaxies suggests that these correlations could arise, at least in part, from an evolutionary sequence. As galaxies form stars, their ISM becomes enriched in dust, while the drop in gas supply makes the specific star formation rate decrease. Interestingly, as a result, a young, actively star-forming galaxy with low dust-to-gas ratio may still be highly dusty (in the sense of a high dust-to-stellar mass ratio) because it contains large amounts of interstellar gas. This may be important for the interpretation of the infrared emission from young, gas-rich star-forming galaxies at high redshift. The results presented in this paper should be especially useful to improve the treatment of the ISM properties of galaxies in semi-analytic models of galaxy formation. Our study also provides a useful local reference for future statistical studies of the star formation and dust properties of galaxies at high redshifts.

Original languageEnglish
Pages (from-to)1894-1908
Number of pages15
JournalMonthly Notices of the Royal Astronomical Society
Volume403
Issue number4
DOIs
Publication statusPublished - Apr 2010
Externally publishedYes

Fingerprint

Dive into the research topics of 'New insight into the relation between star formation activity and dust content in galaxies'. Together they form a unique fingerprint.

Cite this