TY - JOUR
T1 - Nanozymes as a tool to boost agricultural production
T2 - from preparation to application
AU - Huang, Kan
AU - Hu, Chengxiao
AU - Tan, Qiling
AU - Wu, Songwei
AU - Shabala, Sergey
AU - Yu, Min
AU - Sun, Xuecheng
PY - 2024/10/18
Y1 - 2024/10/18
N2 - Nanozymes, as an emerging class of biomimetic enzymes, not only inherit the unique properties of nanomaterials but also endow them with catalytic functions that are similar to biological enzymes. With high designability of catalytic activity and the ability to mimic the catalytic conditions and mechanisms of biological enzymes, nanozymes progressively attract significant attention in agricultural research. This research aims to provide researchers with a comprehensive overview of this emerging tool, from preparation of nanozymes to their applications in agricultural production systems. Firstly, this review systematically summarized the selection of various elements involved in nanozyme preparation, covering both metal-based and non-metal-based materials. Secondly, it outlined the mainstream chemical and environmentally friendly nanozyme synthesis technologies, critically analyzing their advantages and limitations. Thirdly, it explored the multifaceted contributions of nanozymes within the agricultural field, encompassing enhancements in crop quality and yields, augmentation of nitrogen fixation efficiency, and stimulation of microbial activity in the plant rhizosphere, as well as the improvement of agricultural crops' resilience to environmental stresses. Finally, the research discussed the main challenges faced by nanozyme research and provided forward-looking insights for future agricultural research directions. This work significantly advances understanding of the role of nanozymes in sustainable agricultural production.
AB - Nanozymes, as an emerging class of biomimetic enzymes, not only inherit the unique properties of nanomaterials but also endow them with catalytic functions that are similar to biological enzymes. With high designability of catalytic activity and the ability to mimic the catalytic conditions and mechanisms of biological enzymes, nanozymes progressively attract significant attention in agricultural research. This research aims to provide researchers with a comprehensive overview of this emerging tool, from preparation of nanozymes to their applications in agricultural production systems. Firstly, this review systematically summarized the selection of various elements involved in nanozyme preparation, covering both metal-based and non-metal-based materials. Secondly, it outlined the mainstream chemical and environmentally friendly nanozyme synthesis technologies, critically analyzing their advantages and limitations. Thirdly, it explored the multifaceted contributions of nanozymes within the agricultural field, encompassing enhancements in crop quality and yields, augmentation of nitrogen fixation efficiency, and stimulation of microbial activity in the plant rhizosphere, as well as the improvement of agricultural crops' resilience to environmental stresses. Finally, the research discussed the main challenges faced by nanozyme research and provided forward-looking insights for future agricultural research directions. This work significantly advances understanding of the role of nanozymes in sustainable agricultural production.
UR - http://www.scopus.com/inward/record.url?scp=85207467309&partnerID=8YFLogxK
U2 - 10.1039/d4en00780h
DO - 10.1039/d4en00780h
M3 - Review article
AN - SCOPUS:85207467309
SN - 2051-8153
JO - Environmental Science: Nano
JF - Environmental Science: Nano
ER -