TY - JOUR
T1 - Na+/Ca2+ exchanger subtype (NCX1, NCX2, NCX3) protein expression in the rat hippocampus following 3 min and 8 min durations of global cerebral ischemia
AU - Bojarski, Christina
AU - Meloni, Bruno
AU - Moore, S.R.
AU - Majda, Bernadette
AU - Knuckey, Neville
PY - 2008
Y1 - 2008
N2 - There is increasing evidence that the sodium-calcium exchanger (NCX) subtypes, NCX1, NCX2 and NCX3 play an important role in intracellular calcium homeostasis/dysregulation following cerebral ischemia. In the present study we examined NCX1, NCX2 and NCX3 protein levels in the rat hippocampus at 3, 6, 12, 18, 24 and 48 h following a 3 min and 8 min duration of global cerebral ischemia. We observed that NCX1 protein levels were significantly increased by 22.3% and 20.6% at the 6 and 12 h respective time points following a 3 min duration of global ischemia, while NCX2 and NCX3 protein levels remained relatively constant. Following a 8 min duration of global ischemia, NCX1 protein levels remained relatively constant, while NCX2 protein levels were down-regulated by 6.9%, 10.8%, 14.4% and 10.3% at the 6, 18, 24 and 48 h respective time points, and NCX3 protein levels were up-regulated by 22.1% at the 18 h time point. Taken together, our results show that NCX subtype protein expression is sensitive to cerebral ischemia, and indicates that changes in NCX activity may be playing an important role in calcium maintenance and neuronal outcome following ischemia. Crown Copyright (c) 2007 Published by Elsevier B.V. All rights reserved.
AB - There is increasing evidence that the sodium-calcium exchanger (NCX) subtypes, NCX1, NCX2 and NCX3 play an important role in intracellular calcium homeostasis/dysregulation following cerebral ischemia. In the present study we examined NCX1, NCX2 and NCX3 protein levels in the rat hippocampus at 3, 6, 12, 18, 24 and 48 h following a 3 min and 8 min duration of global cerebral ischemia. We observed that NCX1 protein levels were significantly increased by 22.3% and 20.6% at the 6 and 12 h respective time points following a 3 min duration of global ischemia, while NCX2 and NCX3 protein levels remained relatively constant. Following a 8 min duration of global ischemia, NCX1 protein levels remained relatively constant, while NCX2 protein levels were down-regulated by 6.9%, 10.8%, 14.4% and 10.3% at the 6, 18, 24 and 48 h respective time points, and NCX3 protein levels were up-regulated by 22.1% at the 18 h time point. Taken together, our results show that NCX subtype protein expression is sensitive to cerebral ischemia, and indicates that changes in NCX activity may be playing an important role in calcium maintenance and neuronal outcome following ischemia. Crown Copyright (c) 2007 Published by Elsevier B.V. All rights reserved.
U2 - 10.1016/j.brainres.2007.10.065
DO - 10.1016/j.brainres.2007.10.065
M3 - Article
SN - 0006-8993
VL - 1189
SP - 198
EP - 202
JO - Brain Research
JF - Brain Research
ER -