TY - JOUR
T1 - Myostatin and its implications on animal breeding: a review
AU - Bellinge, R.H.S.
AU - Liberles, D.A.
AU - Iaschi, S.P.A.
AU - O'Brien, P.A.
AU - Tay, Guan
PY - 2005
Y1 - 2005
N2 - Myostatin, or growth and differentiation factor 8 (GDF8), has been identified as the factor causing a phenotype known as double muscling, in which a series of mutations render the gene inactive, and therefore, unable to regulate muscle fibre deposition. This phenotype occurs at a high frequency in some breeds of cattle such as Belgian Blue and Peidmontese. Phylogenetic analysis has shown that there has been positive selection pressure for non-synonymous mutations within the myostatin gene family, around the time of the divergence of cattle, sheep and goats, and these positive selective pressures on non-ancestral myostatin are relatively recent. To date, there have been reports of nine mutations in coding regions of myostatin that cause non-synonymous changes, of which three cause missense mutations, including two in exon 1 and one in exon 2. The remaining six mutations, located in exons 2 and 3, result in premature stop codons, which are the mutations responsible for the double-muscling phenotype. Unfortunately, breed management problems exist for double-muscled cattle, such as birthing difficulties, which can be overcome through genetically controlled breeding programmes, as shown in this review.
AB - Myostatin, or growth and differentiation factor 8 (GDF8), has been identified as the factor causing a phenotype known as double muscling, in which a series of mutations render the gene inactive, and therefore, unable to regulate muscle fibre deposition. This phenotype occurs at a high frequency in some breeds of cattle such as Belgian Blue and Peidmontese. Phylogenetic analysis has shown that there has been positive selection pressure for non-synonymous mutations within the myostatin gene family, around the time of the divergence of cattle, sheep and goats, and these positive selective pressures on non-ancestral myostatin are relatively recent. To date, there have been reports of nine mutations in coding regions of myostatin that cause non-synonymous changes, of which three cause missense mutations, including two in exon 1 and one in exon 2. The remaining six mutations, located in exons 2 and 3, result in premature stop codons, which are the mutations responsible for the double-muscling phenotype. Unfortunately, breed management problems exist for double-muscled cattle, such as birthing difficulties, which can be overcome through genetically controlled breeding programmes, as shown in this review.
U2 - 10.1111/j.1365-2052.2004.01229.x
DO - 10.1111/j.1365-2052.2004.01229.x
M3 - Review article
C2 - 15670124
VL - 36
SP - 1
EP - 6
JO - Animal Genetics
JF - Animal Genetics
SN - 0268-9146
ER -