Projects per year
Abstract
© 2016 by the Endocrine Society.
Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a genetic disease first described in 2 unrelated male infants with severe symptomatic hyponatremia. Despite undetectable arginine vasopressin levels, patients have inappropriately concentrated urine resulting in hyponatremia, hypoosmolality, and natriuresis. Here, we describe and functionally characterize a novel vasopressin type 2 receptor (V2R) gain-of-function mutation. An L312S substitution in the seventh transmembrane domain was identified in a boy presenting with water-induced hyponatremic seizures at the age of 5.8 years. We show that, compared with wild-type V2R, the L312S mutation results in the constitutive production of cAMP, indicative of the gain-of-function NSIAD profile. Interestingly, like the previously described F229V and I130N NSIAD-causing mutants, this appears to both occur in the absence of notable constitutive ß-arrestin2 recruitment and can be reduced by the inverse agonist Tolvaptan. In addition, to understand the effect of various V2R substitutions on the full receptor “life-cycle,” we have used and further developed a bioluminescence resonance energy transfer intracellular localization assay using multiple localization markers validated with confocal microscopy. This allowed us to characterize differences in the constitutive and ligand-induced localization and trafficking profiles of the novel L312S mutation as well as for previously described V2R gain-of-function mutants (NSIAD; R137C and R137L), loss-of-function mutants (nephrogenic diabetes insipidus; R137H, R181C, and M311V), and a putative silent V266A V2R polymorphism. In doing so, we describe differences in trafficking between unique V2R substitutions, even at the same amino acid position, therefore highlighting the value of full and thorough characterization of receptor function beyond simple signaling pathway analysis.
Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a genetic disease first described in 2 unrelated male infants with severe symptomatic hyponatremia. Despite undetectable arginine vasopressin levels, patients have inappropriately concentrated urine resulting in hyponatremia, hypoosmolality, and natriuresis. Here, we describe and functionally characterize a novel vasopressin type 2 receptor (V2R) gain-of-function mutation. An L312S substitution in the seventh transmembrane domain was identified in a boy presenting with water-induced hyponatremic seizures at the age of 5.8 years. We show that, compared with wild-type V2R, the L312S mutation results in the constitutive production of cAMP, indicative of the gain-of-function NSIAD profile. Interestingly, like the previously described F229V and I130N NSIAD-causing mutants, this appears to both occur in the absence of notable constitutive ß-arrestin2 recruitment and can be reduced by the inverse agonist Tolvaptan. In addition, to understand the effect of various V2R substitutions on the full receptor “life-cycle,” we have used and further developed a bioluminescence resonance energy transfer intracellular localization assay using multiple localization markers validated with confocal microscopy. This allowed us to characterize differences in the constitutive and ligand-induced localization and trafficking profiles of the novel L312S mutation as well as for previously described V2R gain-of-function mutants (NSIAD; R137C and R137L), loss-of-function mutants (nephrogenic diabetes insipidus; R137H, R181C, and M311V), and a putative silent V266A V2R polymorphism. In doing so, we describe differences in trafficking between unique V2R substitutions, even at the same amino acid position, therefore highlighting the value of full and thorough characterization of receptor function beyond simple signaling pathway analysis.
Original language | English |
---|---|
Pages (from-to) | 889-904 |
Number of pages | 16 |
Journal | Molecular Endocrinology |
Volume | 30 |
Issue number | 8 |
Early online date | 29 Jun 2016 |
DOIs | |
Publication status | Published - 1 Aug 2016 |
Fingerprint
Dive into the research topics of 'Mutations of vasopressin receptor 2 including novel L312S have differential effects on trafficking'. Together they form a unique fingerprint.Projects
- 4 Finished
-
The molecular pharmacology of receptor complexes
Pfleger, K. (Investigator 01)
NHMRC National Health and Medical Research Council
1/01/15 → 31/12/18
Project: Research
-
Molecular pharmacology of chemokine receptor signalling in cancer
White, C. (Investigator 01)
NHMRC National Health and Medical Research Council
1/01/15 → 31/12/21
Project: Research
-
Development of Class-leading Bioluminescence Resonance Energy Transfer Technologies for Real-time Monitoring of Molecular Interactions
Pfleger, K. (Investigator 01), Hill, S. (Investigator 02), Abbenante, G. (Investigator 03) & Wood, K. (Investigator 04)
ARC Australian Research Council , BMG Labtech Pty Ltd, Promega Corporation, University of Nottingham
1/01/13 → 31/12/15
Project: Research