Muscle-specific glucose and free fatty acid uptake after sprint interval and moderate-intensity training in healthy middle-aged men

J.J. Eskelinen, Ilkka Heinonen, E. Löyttyniemi, V. Saunavaara, A. Kirjavainen, K.A. Virtanen, J.C. Hannukainen, K.K. Kalliokoski

    Research output: Contribution to journalArticlepeer-review

    35 Citations (Scopus)

    Abstract

    Copyright © 2015 the American Physiological Society. We tested the hypothesis that sprint interval training (SIT) causes larger improvements in glucose and free fatty acid uptake (FFAU) in lower and upper body muscles than moderate-intensity training (MIT). Twenty-eight healthy, untrained, middle-aged men were randomized into SIT (n = 14, 4-6 × 30 s of all-out cycling/4 min recovery) and MIT groups [n = 14, 40-60 min cycling at 60% of peak O2 uptake (VO2peak)] and completed six training sessions within 2 wk. Pre- and postmeasurements included VO2peak, whole body (M-value), muscle-specific insulin-stimulated glucose uptake (GU), and fasting FFAU measured with positron emission tomography in thigh [quadriceps femoris (QF) and hamstrings] and upper body (deltoids, biceps, and triceps brachii) muscles. VO2peak and M-value improved significantly by 6 and 12% in SIT, and 3 and 8% in MIT, respectively,. GU increased significantly only in the QF, and there was no statistically significant difference between the training modes. GU increased in all four heads of QF in response to SIT, but only in the vasti muscles in response to MIT, whereas in rectus femoris the response was completely lacking. Training response in FFAU in QF was smaller and nonsignificant, but it also differed between the training modes in the rectus femoris. In conclusion, SIT and MIT increased insulin-stimulated GU only in the main working muscle QF and not in the upper body muscles. In addition, the biarticular rectus femoris did not respond to moderate-intensity training, reflecting most probably poor activation of it during moderate-intensity cycling.
    Original languageEnglish
    Pages (from-to)1172-1180
    JournalJournal of Applied Physiology
    Volume118
    Issue number9
    DOIs
    Publication statusPublished - 2015

    Fingerprint

    Dive into the research topics of 'Muscle-specific glucose and free fatty acid uptake after sprint interval and moderate-intensity training in healthy middle-aged men'. Together they form a unique fingerprint.

    Cite this