Multiscale guided attention network for optic disc segmentation of retinal images

A. Z.M.Ehtesham Chowdhury, Andrew Mehnert, Graham Mann, William H. Morgan, Ferdous Sohel

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Optic disc (OD) segmentation from retinal images is crucial for diagnosing, assessing, and tracking the progression of several sight-threatening diseases. This paper presents a deep machine-learning method for semantically segmenting OD from retinal images. The method is named multiscale guided attention network (MSGANet-OD), comprising encoders for extracting multiscale features and decoders for constructing segmentation maps from the extracted features. The decoder also includes a guided attention module that incorporates features related to structural, contextual, and illumination information to segment OD. A custom loss function is proposed to retain the optic disc's geometrical shape (i.e., elliptical) constraint and to alleviate the blood vessels' influence in the overlapping region between the OD and vessels. MSGANet-OD was trained and tested on an in-house clinical color retinal image dataset captured during ophthalmodynamometry as well as on several publicly available color fundus image datasets, e.g., DRISHTI-GS, RIM-ONE-r3, and REFUGE1. Experimental results show that MSGANet-OD achieved superior OD segmentation performance from ophthalmodynamometry images compared to widely used segmentation methods. Our method also achieved competitive results compared to state-of-the-art OD segmentation methods on public datasets. The proposed method can be used in automated systems to quantitatively assess optic nerve head abnormalities (e.g., glaucoma, optic disc neuropathy) and vascular changes in the OD region.

Original languageEnglish
Article number100180
Pages (from-to)1-15
Number of pages15
JournalComputer Methods and Programs in Biomedicine Update
Volume7
Early online date20 Jan 2025
DOIs
Publication statusPublished - Jan 2025

Fingerprint

Dive into the research topics of 'Multiscale guided attention network for optic disc segmentation of retinal images'. Together they form a unique fingerprint.

Cite this