TY - JOUR
T1 - Multi-view underwater image enhancement method via embedded fusion mechanism
AU - Zhou, Jingchun
AU - Sun, Jiaming
AU - Zhang, Weishi
AU - Lin, Zifan
PY - 2023/5
Y1 - 2023/5
N2 - Due to wavelength-dependent light absorption and scattering, underwater images often appear with a colour cast and blurry details. Most existing deep learning methods utilize a single input end-to-end network structure, which leads to a single form and content of the extracted features. To address these problems, we present a novel multi-feature underwater image enhancement method via embedded fusion mechanism (MFEF). We find that the quality of reconstruction results is affected by the quality of the input image to some extent, and use pre-processing to obtain high-quality images, which can improve the final reconstruction effect. We introduce the white balance (WB) algorithm and the contrast-limited adaptive histogram equalization (CLAHE) algorithm employing multiple path inputs to extract different forms of rich features in multiple views. To fully interact with features from multiple views, we design a multi-feature fusion (MFF) module to fuse derived image features. We suggest a novel pixel-weighted channel attention module (PCAM) that calibrates the detailed features of the degraded images using a weight matrix to give diverse weights to the encoded features. Ultimately, our network utilizes a fusion mechanism-based encoder and decoder that can be applied to restore various underwater scenes. In the UIEB dataset, our PSNR increased by 10.2% compared to that of Ucolor. Extensive experimental results demonstrate that the MFEF method outperforms other state-of-the-art underwater image enhancement methods in various real-world datasets.
AB - Due to wavelength-dependent light absorption and scattering, underwater images often appear with a colour cast and blurry details. Most existing deep learning methods utilize a single input end-to-end network structure, which leads to a single form and content of the extracted features. To address these problems, we present a novel multi-feature underwater image enhancement method via embedded fusion mechanism (MFEF). We find that the quality of reconstruction results is affected by the quality of the input image to some extent, and use pre-processing to obtain high-quality images, which can improve the final reconstruction effect. We introduce the white balance (WB) algorithm and the contrast-limited adaptive histogram equalization (CLAHE) algorithm employing multiple path inputs to extract different forms of rich features in multiple views. To fully interact with features from multiple views, we design a multi-feature fusion (MFF) module to fuse derived image features. We suggest a novel pixel-weighted channel attention module (PCAM) that calibrates the detailed features of the degraded images using a weight matrix to give diverse weights to the encoded features. Ultimately, our network utilizes a fusion mechanism-based encoder and decoder that can be applied to restore various underwater scenes. In the UIEB dataset, our PSNR increased by 10.2% compared to that of Ucolor. Extensive experimental results demonstrate that the MFEF method outperforms other state-of-the-art underwater image enhancement methods in various real-world datasets.
KW - Deep learning
KW - Fusion mechanism
KW - Multi-view input
KW - Underwater image
UR - http://www.scopus.com/inward/record.url?scp=85150380342&partnerID=8YFLogxK
U2 - 10.1016/j.engappai.2023.105946
DO - 10.1016/j.engappai.2023.105946
M3 - Article
AN - SCOPUS:85150380342
SN - 0952-1976
VL - 121
JO - Engineering Applications of Artificial Intelligence
JF - Engineering Applications of Artificial Intelligence
M1 - 105946
ER -