TY - JOUR
T1 - Multi-atlas and unsupervised learning approach to perirectal space segmentation in CT images
AU - Ghose, S.
AU - Denham, J.W.
AU - Ebert, Martin
AU - Kennedy, A.
AU - Mitra, J.
AU - Dowling, J.A.
PY - 2016/12/1
Y1 - 2016/12/1
N2 - © 2016, Australasian College of Physical Scientists and Engineers in Medicine.Perirectal space segmentation in computed tomography images aids in quantifying radiation dose received by healthy tissues and toxicity during the course of radiation therapy treatment of the prostate. Radiation dose normalised by tissue volume facilitates predicting outcomes or possible harmful side effects of radiation therapy treatment. Manual segmentation of the perirectal space is time consuming and challenging in the presence of inter-patient anatomical variability and may suffer from inter- and intra-observer variabilities. However automatic or semi-automatic segmentation of the perirectal space in CT images is a challenging task due to inter patient anatomical variability, contrast variability and imaging artifacts. In the model presented here, a volume of interest is obtained in a multi-atlas based segmentation approach. Un-supervised learning in the volume of interest with a Gaussian-mixture-modeling based clustering approach is adopted to achieve a soft segmentation of the perirectal space. Probabilities from soft clustering are further refined by rigid registration of the multi-atlas mask in a probabilistic domain. A maximum a posteriori approach is adopted to achieve a binary segmentation from the refined probabilities. A mean volume similarity value of 97% and a mean surface difference of 3.06 ± 0.51 mm is achieved in a leave-one-patient-out validation framework with a subset of a clinical trial dataset. Qualitative results show a good approximation of the perirectal space volume compared to the ground truth.
AB - © 2016, Australasian College of Physical Scientists and Engineers in Medicine.Perirectal space segmentation in computed tomography images aids in quantifying radiation dose received by healthy tissues and toxicity during the course of radiation therapy treatment of the prostate. Radiation dose normalised by tissue volume facilitates predicting outcomes or possible harmful side effects of radiation therapy treatment. Manual segmentation of the perirectal space is time consuming and challenging in the presence of inter-patient anatomical variability and may suffer from inter- and intra-observer variabilities. However automatic or semi-automatic segmentation of the perirectal space in CT images is a challenging task due to inter patient anatomical variability, contrast variability and imaging artifacts. In the model presented here, a volume of interest is obtained in a multi-atlas based segmentation approach. Un-supervised learning in the volume of interest with a Gaussian-mixture-modeling based clustering approach is adopted to achieve a soft segmentation of the perirectal space. Probabilities from soft clustering are further refined by rigid registration of the multi-atlas mask in a probabilistic domain. A maximum a posteriori approach is adopted to achieve a binary segmentation from the refined probabilities. A mean volume similarity value of 97% and a mean surface difference of 3.06 ± 0.51 mm is achieved in a leave-one-patient-out validation framework with a subset of a clinical trial dataset. Qualitative results show a good approximation of the perirectal space volume compared to the ground truth.
U2 - 10.1007/s13246-016-0496-0
DO - 10.1007/s13246-016-0496-0
M3 - Article
C2 - 27844331
SN - 0158-9938
VL - 39
SP - 933
EP - 941
JO - Australasian Physical and Engineering Sciences in Medicine
JF - Australasian Physical and Engineering Sciences in Medicine
IS - 4
ER -