TY - JOUR
T1 - Mucopolysaccharidosis (MPS IIIA) mice have increased lung compliance and airway resistance, decreased diaphragm strength, and no change in alveolar structure
AU - Paget, Tamara L.
AU - Larcombe, Alexander N.
AU - Pinniger, Gavin J.
AU - Tsioutsias, Irene
AU - Schneider, Jan Philipp
AU - Parkinson-Lawrence, Emma J.
AU - Orgeig, Sandra
N1 - Publisher Copyright:
© 2024 the American Physiological Society.
PY - 2024/6
Y1 - 2024/6
N2 - Mucopolysaccharidosis type IIIA (MPS IIIA) is characterized by neurological and skeletal pathologies caused by reduced activity of the lysosomal hydrolase, sulfamidase, and the subsequent primary accumulation of undegraded heparan sulfate (HS). Respiratory pathology is considered secondary in MPS IIIA and the mechanisms are not well understood. Changes in the amount, metabolism, and function of pulmonary surfactant, the substance that regulates alveolar interfacial surface tension and modulates lung compliance and elastance, have been reported in MPS IIIA mice. Here we investigated changes in lung function in 20-wk-old control and MPS IIIA mice with a closed and open thoracic cage, diaphragm contractile properties, and potential parenchymal remodeling. MPS IIIA mice had increased compliance and airway resistance and reduced tissue damping and elastance compared with control mice. The chest wall impacted lung function as observed by an increase in airway resistance and a decrease in peripheral energy dissipation in the open compared with the closed thoracic cage state in MPS IIIA mice. Diaphragm contractile forces showed a decrease in peak twitch force, maximum specific force, and the force-frequency relationship but no change in muscle fiber cross-sectional area in MPS IIIA mice compared with control mice. Design-based stereology did not reveal any parenchymal remodeling or destruction of alveolar septa in the MPS IIIA mouse lung. In conclusion, the increased storage of HS which leads to biochemical and biophysical changes in pulmonary surfactant also affects lung and diaphragm function, but has no impact on lung or diaphragm structure at this stage of the disease.
AB - Mucopolysaccharidosis type IIIA (MPS IIIA) is characterized by neurological and skeletal pathologies caused by reduced activity of the lysosomal hydrolase, sulfamidase, and the subsequent primary accumulation of undegraded heparan sulfate (HS). Respiratory pathology is considered secondary in MPS IIIA and the mechanisms are not well understood. Changes in the amount, metabolism, and function of pulmonary surfactant, the substance that regulates alveolar interfacial surface tension and modulates lung compliance and elastance, have been reported in MPS IIIA mice. Here we investigated changes in lung function in 20-wk-old control and MPS IIIA mice with a closed and open thoracic cage, diaphragm contractile properties, and potential parenchymal remodeling. MPS IIIA mice had increased compliance and airway resistance and reduced tissue damping and elastance compared with control mice. The chest wall impacted lung function as observed by an increase in airway resistance and a decrease in peripheral energy dissipation in the open compared with the closed thoracic cage state in MPS IIIA mice. Diaphragm contractile forces showed a decrease in peak twitch force, maximum specific force, and the force-frequency relationship but no change in muscle fiber cross-sectional area in MPS IIIA mice compared with control mice. Design-based stereology did not reveal any parenchymal remodeling or destruction of alveolar septa in the MPS IIIA mouse lung. In conclusion, the increased storage of HS which leads to biochemical and biophysical changes in pulmonary surfactant also affects lung and diaphragm function, but has no impact on lung or diaphragm structure at this stage of the disease.
KW - design-based stereology
KW - diaphragm function
KW - lung structure and function
KW - lysosomal storage disease
KW - Sanfilippo syndrome
UR - http://www.scopus.com/inward/record.url?scp=85194216258&partnerID=8YFLogxK
U2 - 10.1152/ajplung.00445.2022
DO - 10.1152/ajplung.00445.2022
M3 - Article
C2 - 38469649
AN - SCOPUS:85194216258
SN - 1040-0605
VL - 326
SP - L713-L726
JO - American Journal of Physiology - Lung Cellular and Molecular Physiology
JF - American Journal of Physiology - Lung Cellular and Molecular Physiology
IS - 6
ER -