TY - JOUR
T1 - Morphological relationships of peptidergic and noradrenergic nerve terminals to olivocochlear neurones in the rat
AU - Mulders, Wilhelmina
AU - Robertson, Donald
PY - 2000
Y1 - 2000
N2 - In the rat, the outer hair cells in the cochlea receive direct synaptic input from neurones in the ventral nucleus of the trapezoid body. These so-called medial olivocochlear neurones exert an inhibitory influence on the cochlear neural output. Electrophysiological in vitro studies suggest that the activity of medial olivocochlear neurones may be affected by a variety of neuropeptides as well as noradrenaline, but anatomical confirmation of direct synaptic input is still lacking. We have investigated, at the light microscopical level, the morphological relationships between terminals containing noradrenaline, substance P, cholecystokinin and leu-enkephalin, and medial olivocochlear neurones in the rat. A retrograde tracer was injected into the cochlea to label medial olivocochlear neurones and a double labelling immunocytochemical method was used to visualise the retrograde tracer as well as the neurotransmitters within each brain section. Light microscopical analysis revealed nerve endings containing substance P, cholecystokinin and leu-enkephalin in close apposition to the dendrites of medial olivocochlear neurones, and nerve endings containing dopamine-beta-hydroxylase, a marker for noradrenaline. in close contact with the somata as well as dendrites of medial olivocochlear neurones. Although the technique cannot prove the existence of functional synaptic contacts, the results are broadly consistent with electrophysiological data and suggest a direct input to medial olivocochlear neurones from substance P, cholecystokinin, leu-enkephalin and noradrenaline-containing neural pathways. Differences in the densities and spatial distribution of the various neuropharmacological inputs suggest differences in the relative strengths and possible roles of these diverse inputs to the olivocochlear system. (C) 2000 Elsevier Science B.V. All rights reserved.
AB - In the rat, the outer hair cells in the cochlea receive direct synaptic input from neurones in the ventral nucleus of the trapezoid body. These so-called medial olivocochlear neurones exert an inhibitory influence on the cochlear neural output. Electrophysiological in vitro studies suggest that the activity of medial olivocochlear neurones may be affected by a variety of neuropeptides as well as noradrenaline, but anatomical confirmation of direct synaptic input is still lacking. We have investigated, at the light microscopical level, the morphological relationships between terminals containing noradrenaline, substance P, cholecystokinin and leu-enkephalin, and medial olivocochlear neurones in the rat. A retrograde tracer was injected into the cochlea to label medial olivocochlear neurones and a double labelling immunocytochemical method was used to visualise the retrograde tracer as well as the neurotransmitters within each brain section. Light microscopical analysis revealed nerve endings containing substance P, cholecystokinin and leu-enkephalin in close apposition to the dendrites of medial olivocochlear neurones, and nerve endings containing dopamine-beta-hydroxylase, a marker for noradrenaline. in close contact with the somata as well as dendrites of medial olivocochlear neurones. Although the technique cannot prove the existence of functional synaptic contacts, the results are broadly consistent with electrophysiological data and suggest a direct input to medial olivocochlear neurones from substance P, cholecystokinin, leu-enkephalin and noradrenaline-containing neural pathways. Differences in the densities and spatial distribution of the various neuropharmacological inputs suggest differences in the relative strengths and possible roles of these diverse inputs to the olivocochlear system. (C) 2000 Elsevier Science B.V. All rights reserved.
U2 - 10.1016/S0378-5955(00)00045-9
DO - 10.1016/S0378-5955(00)00045-9
M3 - Article
SN - 0378-5955
VL - 144
SP - 53
EP - 64
JO - Hearing Research
JF - Hearing Research
ER -