Morphological plasticity of the coral skeleton under CO2-driven seawater acidification

E. Tambutté, A.A. Venn, Michael Holcomb, N. Segonds, N. Techer, D. Zoccola, D. Allemand, S. Tambutté

    Research output: Contribution to journalArticlepeer-review

    133 Citations (Scopus)

    Abstract

    © 2015 Macmillan Publishers Limited. All rights reserved. Ocean acidification causes corals to calcify at reduced rates, but current understanding of the underlying processes is limited. Here, we conduct a mechanistic study into how seawater acidification alters skeletal growth of the coral Stylophora pistillata. Reductions in colony calcification rates are manifested as increases in skeletal porosity at lower pH, while linear extension of skeletons remains unchanged. Inspection of the microstructure of skeletons and measurements of pH at the site of calcification indicate that dissolution is not responsible for changes in skeletal porosity. Instead, changes occur by enlargement of corallite-calyxes and thinning of associated skeletal elements, constituting a modification in skeleton architecture. We also detect increases in the organic matrix protein content of skeletons formed under lower pH. Overall, our study reveals that seawater acidification not only causes decreases in calcification, but can also cause morphological change of the coral skeleton to a more porous and potentially fragile phenotype.
    Original languageEnglish
    Pages (from-to)7368
    JournalNature Communications
    Volume6
    DOIs
    Publication statusPublished - 2015

    Fingerprint

    Dive into the research topics of 'Morphological plasticity of the coral skeleton under CO2-driven seawater acidification'. Together they form a unique fingerprint.

    Cite this