Morin attenuates osteoclast formation and function by suppressing the NF-κB, MAPK and calcium signalling pathways

Yifeng Shi, Lin Ye, Shiwei Shen, Tianchen Qian, Youjin Pan, Yuhan Jiang, Jinghao Lin, Chen Liu, Yaosen Wu, Xiangyang Wang, Jiake Xu, Haiming Jin

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Morin is a natural compound isolated from moraceae family members and has been reported to possess a range of pharmacological activities. However, the effects of morin on bone-associated disorders and the potential mechanism remain unknown. In this study, we investigated the anti-osteoclastogenic effect of morin in vitro and the potential therapeutic effects on ovariectomy (OVX)-induced osteoporosis in vivo. In vitro, by using a bone marrow macrophage-derived osteoclast culture system, we determined that morin attenuated receptor activator of nuclear factor (NF)-κB ligand (RANKL)-induced osteoclast formation via the inhibition of the mitogen-activated protein kinase (MAPK), NF-κB and calcium pathways. In addition, the subsequent expression of nuclear factor of activated T cells c1 (NFATc1) and c-fos was significantly suppressed by morin. In addition, NFATc1 downregulation led to the reduced expression of osteoclastogenesis-related marker genes, such as V-ATPase-d2 and Integrin β3. In vivo, results provided that morin could effectively attenuate OVX-induced bone loss in C57BL/6 mice. In conclusion, our results demonstrated that morin suppressed RANKL-induced osteoclastogenesis via the NF-κB, MAPK and calcium pathways, in addition, its function of preventing OVX-induced bone loss in vivo, which suggested that morin may be a potential therapeutic agent for postmenopausal osteoporosis treatment.

Original languageEnglish
Pages (from-to)5694-5707
Number of pages14
JournalPhytotherapy Research
Volume35
Issue number10
Early online date22 Aug 2021
DOIs
Publication statusPublished - Oct 2021

Fingerprint

Dive into the research topics of 'Morin attenuates osteoclast formation and function by suppressing the NF-κB, MAPK and calcium signalling pathways'. Together they form a unique fingerprint.

Cite this