Monitoring water transport in sandstone using flow propagators: A quantitative comparison of nuclear magnetic resonance measurement with lattice Boltzmann and pore network simulations

R. Hussain, J.B.A. Mitchell, P.S. Hammond, A.J. Sederman, Michael Johns

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

A comparison of advective displacement probability distributions (flow propagators) obtained by nuclear magnetic resonance (NMR) experiment with both lattice Boltzmann (LB) and pore network (PN) simulations is presented. Here, we apply all three methods to the exact same sample for the first time: we consider water transport in a Bentheimer sandstone. The LB and PN simulations are based on X-ray micro-tomography (XMT) images of a small rock sample; the NMR experiments are conducted on a much larger rock core-plug from which the small rock sample originated. Despite the limited size of the simulation domains, good agreement is achieved between all three sets of results, verified quantitatively by comparison of the low order moments of the flow propagators. We are concerned primarily with validating the simulations at high liquid flow rates (10mlmin-1) in high permeability sandstone, ultimately for future application to geological carbon sequestration studies. Under these conditions the LB simulation is found, as expected, to be more robust than the PN model due primarily to the reduced requirement to manually tune the simulation lattice to match the petro-physical properties of the rock. © 2013 Elsevier Ltd.
Original languageEnglish
Pages (from-to)64-74
JournalAdvances in Water Resources
Volume60
DOIs
Publication statusPublished - 2013

Fingerprint

Dive into the research topics of 'Monitoring water transport in sandstone using flow propagators: A quantitative comparison of nuclear magnetic resonance measurement with lattice Boltzmann and pore network simulations'. Together they form a unique fingerprint.

Cite this