Molecular structure and function of microfibrillar-associated proteins in skeletal and metabolic disorders and cancers

Sipin Zhu, Lin Ye, Samuel Bennett, Huazi Xu, Dengwei He, Jiake Xu

Research output: Contribution to journalReview article

1 Citation (Scopus)

Abstract

Microfibrillar-associated proteins (MFAPs) are extracellular matrix glycoproteins, which play a role in microfibril assembly, elastinogenesis, and tissue homeostasis. MFAPs consist of five subfamily members, including MFAP1, MFAP2, MFAP3, MFAP4, and MFAP5. Among these, MFAP2 and MFAP5 are most closely related, and exhibit very limited amino acid sequence homology with MFAP1, MFAP3, and MFAP4. Gene expression profiling analysis reveals that MFAP2, MFAP5, and MFAP4 are specifically expressed in osteoblastic like cells, whereas MFAP1 and MFAP3 are more ubiquitously expressed, indicative of their diverse role in the tropism of tissues. Molecular structural analysis shows that each MFAP family member has distinct features, and functional evidence reveals discrete purposes of individual MFAPs. Animal studies indicate that MFAP2-deficient mice exhibit progressive osteopenia with elevated receptor activator of NF-κB ligand (RANKL) expression, whereas MFAP5-deficient mice are neutropenic, and MFAP4-deficient mice displayed emphysema-like pathology and the impaired formation of neointimal hyperplasia. Emerging data also suggest that MFAPs are involved in cancer progression and fat metabolism. Further understanding of tissue-specific pathophysiology of MFAPs might offer potential novel therapeutic targets for related diseases, such as skeletal and metabolic disorders, and cancers.

Original languageEnglish
Pages (from-to)41-48
Number of pages8
JournalJournal of Cellular Physiology
Volume236
Issue number1
DOIs
Publication statusPublished - Jan 2021

Fingerprint Dive into the research topics of 'Molecular structure and function of microfibrillar-associated proteins in skeletal and metabolic disorders and cancers'. Together they form a unique fingerprint.

Cite this