TY - JOUR
T1 - Molecular Genetic Markers: Discovery, Applications, Data Storage and Visualisation
AU - Duran, C.
AU - Appleby, N.
AU - Edwards, D.
AU - Batley, Jacqueline
PY - 2009
Y1 - 2009
N2 - Molecular genetic markers represent one of the most powerful tools for the analysis of genomes and enable the association of heritable traits with underlying genomic variation. Molecular marker technology has developed rapidly over the last decade and two forms of sequence based marker, Simple Sequence Repeats (SSRs), also known as microsatellites, and Single Nucleotide Polymorphisms (SNPs) now predominate applications in modern genetic analysis. The reducing cost of DNA sequencing has led to the availability of large sequence data sets derived from whole genome sequencing and large scale Expressed Sequence Tag (EST) discovery that enable the mining of SSRs and SNPs, which may then be applied to diversity analysis, genetic trait mapping, association studies, and marker assisted selection. These markers are inexpensive, require minimal labour to produce and can frequently be associated with annotated genes. Here we review automated methods for the discovery of SSRs and SNPs and provide an overview of the diverse applications of these markers.
AB - Molecular genetic markers represent one of the most powerful tools for the analysis of genomes and enable the association of heritable traits with underlying genomic variation. Molecular marker technology has developed rapidly over the last decade and two forms of sequence based marker, Simple Sequence Repeats (SSRs), also known as microsatellites, and Single Nucleotide Polymorphisms (SNPs) now predominate applications in modern genetic analysis. The reducing cost of DNA sequencing has led to the availability of large sequence data sets derived from whole genome sequencing and large scale Expressed Sequence Tag (EST) discovery that enable the mining of SSRs and SNPs, which may then be applied to diversity analysis, genetic trait mapping, association studies, and marker assisted selection. These markers are inexpensive, require minimal labour to produce and can frequently be associated with annotated genes. Here we review automated methods for the discovery of SSRs and SNPs and provide an overview of the diverse applications of these markers.
U2 - 10.2174/157489309787158198
DO - 10.2174/157489309787158198
M3 - Review article
SN - 1574-8936
VL - 4
SP - 16
EP - 27
JO - Current Bioinformatics
JF - Current Bioinformatics
IS - 1
ER -