TY - JOUR
T1 - Molecular epidemiology of Neisseria gonorrhoeae using multi-antigen sequence typing and pulse-field gel electrophoresis in highly endemic Western Australian populations
AU - O'Reilly, L.C.
AU - Goire, Namraj
AU - Fisk, R.E.
AU - Speers, David
PY - 2015
Y1 - 2015
N2 - © 2015 O'Reilly et al. Background: The remote and indigenous populations of Western Australia (WA) have one of the highest notification rates of gonorrhoea in the world. Despite this, the low rate of antimicrobial resistance in Neisseria gonorrhoeae from these regions permits the use of amoxycillin as empirical therapy. We describe the first molecular epidemiological study of gonococci isolated from this population using two different typing platforms. Methods: Pulse-field gel electrophoresis (PFGE), Neisseria gonorrhoeae multi-antigen sequence typing (NG-MAST) and antimicrobial susceptibility tests were performed on 128 consecutive N. gonorrhoeae isolates cultured between January 2011 and December 2013. To highlight clusters isolates were evaluated based on their tbpB sequence types. Results: No predominant NG-MAST or PFGE types were found. A total of 67 distinct PFGE pulsotypes were identified amongst the 128 isolates in this study with 20 PFGE pulsotypes representing 78 isolates. A total of 59 NG-MAST sequence types were found, represented by 45 porB alleles and 28 tbpB alleles with 13 tbpB genomogroups from 45 NG-MAST sequence types. TbpB genomogroup 29, represented by 45 isolates, was by far the most common genomogroup overall. Conclusions: Results from this study suggest that gonococcal epidemiology in WA is quite different between remote regions and major population centres and, in some cases, geographically restricted. It is likely that isolates originating from endemic regions of WA mostly represent independent, small sexual networks with an infrequent interchange between other communities and regions. Given the high rate of antimicrobial resistance elsewhere in Australia, ongoing surveillance is essential to ensure the enduring efficacy of amoxycillin empiric use in the remote regions of WA.
AB - © 2015 O'Reilly et al. Background: The remote and indigenous populations of Western Australia (WA) have one of the highest notification rates of gonorrhoea in the world. Despite this, the low rate of antimicrobial resistance in Neisseria gonorrhoeae from these regions permits the use of amoxycillin as empirical therapy. We describe the first molecular epidemiological study of gonococci isolated from this population using two different typing platforms. Methods: Pulse-field gel electrophoresis (PFGE), Neisseria gonorrhoeae multi-antigen sequence typing (NG-MAST) and antimicrobial susceptibility tests were performed on 128 consecutive N. gonorrhoeae isolates cultured between January 2011 and December 2013. To highlight clusters isolates were evaluated based on their tbpB sequence types. Results: No predominant NG-MAST or PFGE types were found. A total of 67 distinct PFGE pulsotypes were identified amongst the 128 isolates in this study with 20 PFGE pulsotypes representing 78 isolates. A total of 59 NG-MAST sequence types were found, represented by 45 porB alleles and 28 tbpB alleles with 13 tbpB genomogroups from 45 NG-MAST sequence types. TbpB genomogroup 29, represented by 45 isolates, was by far the most common genomogroup overall. Conclusions: Results from this study suggest that gonococcal epidemiology in WA is quite different between remote regions and major population centres and, in some cases, geographically restricted. It is likely that isolates originating from endemic regions of WA mostly represent independent, small sexual networks with an infrequent interchange between other communities and regions. Given the high rate of antimicrobial resistance elsewhere in Australia, ongoing surveillance is essential to ensure the enduring efficacy of amoxycillin empiric use in the remote regions of WA.
U2 - 10.1186/s12879-015-0988-7
DO - 10.1186/s12879-015-0988-7
M3 - Article
C2 - 26174237
SN - 1471-2334
VL - 15
SP - 1
EP - 7
JO - BMC Infectious Diseases
JF - BMC Infectious Diseases
IS - 1
ER -