Abstract
In this work we report on a single photon detector system which offers near-unity detection efficiency using waveguide-coupled superconducting nanowires with lengths on the order of 1 μm. This is achieved by embedding the nanowires in a racetrack resonator where the interaction time with the photons trapped in the cavity is increased, thereby allowing for shorter nanowires. We expect this to lead to a higher fabrication yield as the amount of inhomogeneities decreases for shorter nanowires. Our simulations show a system with a 1 μm long superconducting nanowire single photon detector (SNSPD) operating at near-unity detection efficiency using design parameters that can be realistically achieved with conventional fabrication processes. The resonant cavity introduces spectral selectivity to the otherwise broad-band SNSPDs and the cavity induced timing jitter is shown to be insignificant for SNSPDs longer than 1 μm.
Original language | English |
---|---|
Pages (from-to) | 8797-8808 |
Number of pages | 12 |
Journal | Optics Express |
Volume | 24 |
Issue number | 8 |
DOIs | |
Publication status | Published - 18 Apr 2016 |
Externally published | Yes |