Modelling distribution of marine benthos from hydroacoustics and underwater video

Karen Holmes, Kimberly Van Niel, Ben Radford, Gary Kendrick, Simon Grove

Research output: Contribution to journalArticle

86 Citations (Scopus)

Abstract

Broad-scale mapping of marine benthos is required for marine resource management and conservation. This study combines textural derivatives based on bathymetry from multibeam hydroacoustics with underwater video observations to model and map sessile biota between 10- and 60-m water depth over 35 km(2) in Point Addis Marine National Park (MNP), Vic., Australia. Classification tree models and maps were developed for macroalgae (all types, mixed red algae, Ecklonia, and rhodoliths) and sessile invertebrates (all types, sponges, and ascidians). Model accuracy was tested on 25% of the video observation dataset reserved from modelling. Models fit well for most macroalgae categories (correct classification rates of 67-84%), but are not as good for sessile invertebrate classes (correct classification rates of 57-62%). The poor fit of the sessile invertebrate models may be the combined result of grouping organisms with different environmental requirements and the effect of false absences recorded during video interpretation due to poor image quality. Probability maps, binary single-class maps, and multi-class maps supply spatially explicit, detailed information on the distribution of sessile benthic biota within the MNP and provide information at a landscape-scale for ecological investigations and marine management. (C) 2008 Elsevier Ltd. All rights reserved.
Original languageEnglish
Pages (from-to)1800-1810
JournalContinental Shelf Research
Volume28
DOIs
Publication statusPublished - 2008

Fingerprint Dive into the research topics of 'Modelling distribution of marine benthos from hydroacoustics and underwater video'. Together they form a unique fingerprint.

Cite this