Modeling Impact Load on a Vertical Cylinder in Dam-Break Flows

Di Mu, Lifen Chen, Dezhi Ning

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)

    Abstract

    A three-dimensional dam-break flow interacting with a vertical circular and square cylinder is studied in this paper using computational fluid dynamics simulations based on OpenFOAM. This resembles closely a tsunami wave and greenwater flow acting on coastal or on-deck structures, which are of relevance and importance to coastal protections and offshore operations, respectively. The numerical model is verified by comparing with published experimental measurements and is extended to investigate the effects of the structural geometry and the impacting angle β (i.e., the angle between the water front and cylinders) on the total impact load and the surrounding flow field. It is found that the impact event experiences two distinct stages characterized by a constant flow velocity and a negative flow acceleration, respectively. In addition, the total force on a square cylinder is nearly twice that of a circular cylinder although the impacting area is the same. The longitudinal and transverse forces are found to decrease and increase with the impacting angle, respectively. A close interrogation of the surrounding flow field via flow visualization suggests that the way the flow deflected from the cylinder surfaces plays an important role in determining the pressure field and thus the total force behaviors.

    Original languageEnglish
    Article number932
    JournalJournal of Marine Science and Engineering
    Volume11
    Issue number5
    DOIs
    Publication statusPublished - May 2023

    Fingerprint

    Dive into the research topics of 'Modeling Impact Load on a Vertical Cylinder in Dam-Break Flows'. Together they form a unique fingerprint.

    Cite this