Model and laboratory study of dispersion in flows with submerged vegetation

E. Murphy, Marco Ghisalberti, N.M. Nepf

    Research output: Contribution to journalArticlepeer-review

    179 Citations (Scopus)

    Abstract

    Vegetation is ubiquitous in rivers, estuaries, and wetlands, strongly influencing water conveyance and mass transport. The plant canopy affects mean and turbulent flow structure, and thus both advection and dispersion. Accurate prediction for the transport of nutrients, microbes, dissolved oxygen and other scalars depends on our ability to quantify the impact of vegetation. In this paper, we focus on longitudinal dispersion, which traditionally has been modeled in vegetated channels by drawing analogy to rough boundary layers. This approach is inappropriate in many cases, as the vegetation provides a significant dead zone, which may trap scalars and augment dispersion. The dead zone process is not captured in the rough boundary model. This paper describes a new model for longitudinal dispersion in channels with submerged vegetation, and it validates the model with experimental observations.
    Original languageEnglish
    Pages (from-to)1-12
    JournalWater Resources Research
    Volume43
    Issue number5
    DOIs
    Publication statusPublished - 2007

    Fingerprint

    Dive into the research topics of 'Model and laboratory study of dispersion in flows with submerged vegetation'. Together they form a unique fingerprint.

    Cite this