Projects per year
Abstract
Pyruvate dehydrogenase (PDH) is the first enzyme (E1) of the PDH complex (PDC). This multienzyme complex contains E1, E2 and E3 components and controls the entry of carbon into the mitochondrial tricarboxylic acid (TCA) cycle to enable cellular energy production. The E1 component of PDC is composed of an E1α catalytic subunit and an E1β regulatory subunit. In Arabidopsis thaliana, there are two mitochondrial E1α homologs encoded by IAA-Alanine Resistant 4 (IAR4) and IAR4-LIKE (IAR4L), and one mitochondrial E1β homolog. Although IAR4 was reported to be involved in auxin conjugate sensitivity and auxin homeostasis in root development, its precise role remains unknown. Here, we provide experimental evidence that mitochondrial PDC E1 contributes to polar auxin transport during organ development. We performed genetic screens for factors involved in cotyledon development and identified a uncharacterized mutant, macchi-bou 1 (mab1). MAB1 encodes a mitochondrial PDC E1β subunit that can form both a homodimer and a heterodimer with IAR4. The mab1 mutation impaired MAB1 homodimerization, reduced the abundance of IAR4 and IAR4L, weakened PDC enzymatic activity, and diminished mitochondrial respiration. A metabolomics analysis showed significant changes in metabolites including amino acids in mab1 and, in particular, identified an accumulation of alanine. These results suggest that MAB1 is a component of the Arabidopsis mitochondrial PDC E1. Furthermore, in mab1 mutants and seedlings where the TCA cycle was pharmacologically blocked, we found reduced abundance of the PIN-FORMED (PIN) auxin efflux carriers, possibly due to impaired PIN recycling and enhanced PIN degradation in vacuoles. Therefore, we suggest that mab1 induces defective polar auxin transport via metabolic abnormalities.
Original language | English |
---|---|
Pages (from-to) | 896-909 |
Number of pages | 14 |
Journal | Plant Physiology (Online) |
Volume | 180 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jun 2019 |
Fingerprint
Dive into the research topics of 'Mitochondrial pyruvate dehydrogenase contributes to auxin-regulated organ development'. Together they form a unique fingerprint.Projects
- 3 Finished
-
ARC Centre of Excellence in Plant Energy Biology 2014 (CPEB2)
Millar, H. (Investigator 01), Pogson, B. (Investigator 02), Tyerman, S. (Investigator 03), Small, I. (Investigator 04), Whelan, J. (Investigator 05), Borevitz, J. (Investigator 06), Lister, R. (Investigator 07), Atkin, O. (Investigator 08) & Munns, R. (Investigator 09)
ARC Australian Research Council
1/01/14 → 31/05/21
Project: Research
-
Dissecting novel roles of succinate dehydrogenase in stomatal aperture and root elongation in plants
Huang, S. (Investigator 01)
ARC Australian Research Council
1/01/13 → 31/12/18
Project: Research
-
Regulation and Role of Metabolic Networks for Respiration in Plants
Millar, H. (Investigator 01)
ARC Australian Research Council
1/01/11 → 31/03/16
Project: Research