TY - JOUR
T1 - Milk production and composition, and progeny performance in young ewes with high merit for rapid growth and muscle and fat accumulation
AU - Rosales Nieto, C. A.
AU - Ferguson, M. B.
AU - Macleay, C. A.
AU - Briegel, J. R.
AU - Wood, D. A.
AU - Martin, G. B.
AU - Bencini, R.
AU - Thompson, A. N.
PY - 2018/11
Y1 - 2018/11
N2 - In ewe lambs, acceleration of growth and accumulation of both muscle and fat leads to earlier sexual maturity and better reproductive performance. The next stage in the development of this theme is to test whether these aspects of growth in young ewes affect milk production in their first lactation and the growth of their first progeny. We studied 75 young Merino ewes that had known phenotypic values for depth of eye muscle (EMD) and fat (FAT), and known Australian Sheep Breeding Values for post-weaning weight (PWT) and depths of eye muscle (PEMD) and fat (PFAT). They lambed for the first time at 1 year of age. Their lambs were weighed weekly from birth to weaning at 10 weeks to determine live weight gain and weaning weight. Progeny birth weight was positively associated with live weight gain and weaning weight (P<0.001). The PWT of the mothers was positively associated with birth weight (P<0.01), live weight gain and weaning weight of the progeny (P<0.05); however, these progeny traits were not influenced by EMD, FAT, PEMD, PFAT of the mothers (P>0.05). The PWT of the sire was positively associated with live weight gain (P<0.05) and weaning weight of the progeny (P<0.01). At around day 20 postpartum, we measured milk production and milk composition (fat, protein, lactose, total solids). Milk production was influenced positively by birth type (single or twin; P<0.05) and negatively by birth weight (P<0.05), but not by mother phenotype or genotype, sire genotype of the mother or the sex of the progeny (P>0.05). The concentrations of fat, protein, lactose and total solids in the milk were not affected by the phenotype or genotype of the mothers or of the sires of the mothers, or by the sex of the progeny (P>0.05). We conclude that selection of young Merino ewes for better growth, and more rapid accumulation of muscle and fat, will lead to progeny that are heavier at birth, grow faster and are heavier at weaning. Moreover, milk production and composition do not seem to be affected by the genetic merit of the mother for post-weaning live weight or PEMD or PFAT. Therefore, Merino ewes can lamb at 1 year of age without affecting the production objectives of the Merino sheep industry.
AB - In ewe lambs, acceleration of growth and accumulation of both muscle and fat leads to earlier sexual maturity and better reproductive performance. The next stage in the development of this theme is to test whether these aspects of growth in young ewes affect milk production in their first lactation and the growth of their first progeny. We studied 75 young Merino ewes that had known phenotypic values for depth of eye muscle (EMD) and fat (FAT), and known Australian Sheep Breeding Values for post-weaning weight (PWT) and depths of eye muscle (PEMD) and fat (PFAT). They lambed for the first time at 1 year of age. Their lambs were weighed weekly from birth to weaning at 10 weeks to determine live weight gain and weaning weight. Progeny birth weight was positively associated with live weight gain and weaning weight (P<0.001). The PWT of the mothers was positively associated with birth weight (P<0.01), live weight gain and weaning weight of the progeny (P<0.05); however, these progeny traits were not influenced by EMD, FAT, PEMD, PFAT of the mothers (P>0.05). The PWT of the sire was positively associated with live weight gain (P<0.05) and weaning weight of the progeny (P<0.01). At around day 20 postpartum, we measured milk production and milk composition (fat, protein, lactose, total solids). Milk production was influenced positively by birth type (single or twin; P<0.05) and negatively by birth weight (P<0.05), but not by mother phenotype or genotype, sire genotype of the mother or the sex of the progeny (P>0.05). The concentrations of fat, protein, lactose and total solids in the milk were not affected by the phenotype or genotype of the mothers or of the sires of the mothers, or by the sex of the progeny (P>0.05). We conclude that selection of young Merino ewes for better growth, and more rapid accumulation of muscle and fat, will lead to progeny that are heavier at birth, grow faster and are heavier at weaning. Moreover, milk production and composition do not seem to be affected by the genetic merit of the mother for post-weaning live weight or PEMD or PFAT. Therefore, Merino ewes can lamb at 1 year of age without affecting the production objectives of the Merino sheep industry.
KW - first lactation
KW - Merino sheep
KW - primiparous ewes
KW - progeny birth weight
KW - progeny weaning weight
UR - http://www.scopus.com/inward/record.url?scp=85042532983&partnerID=8YFLogxK
U2 - 10.1017/S1751731118000307
DO - 10.1017/S1751731118000307
M3 - Article
C2 - 29478429
AN - SCOPUS:85042532983
SN - 1751-7311
VL - 12
SP - 2292
EP - 2299
JO - Animal
JF - Animal
IS - 11
ER -