Microbial Functional Capacity Is Preserved Within Engineered Soil Formulations Used in Mine Site Restoration

Deepak Kumaresan, Adam T. Cross, Benjamin Moreira-Grez, Khalil Kariman, Paul Nevill, Jason Stevens, Richard J N Allcock, Anthony G. O'Donnell, Kingsley W. DIxon, Andrew S. Whiteley

Research output: Contribution to journalArticlepeer-review

38 Citations (Web of Science)


Mining of mineral resources produces substantial volumes of crushed rock based wastes that are characterised by poor physical structure and hydrology, unstable geochemistry and potentially toxic chemical conditions. Recycling of these substrates is desirable and can be achieved by blending waste with native soil to form a 'novel substrate' which may be used in future landscape restoration. However, these post-mining substrate based 'soils' are likely to contain significant abiotic constraints for both plant and microbial growth. Effective use of these novel substrates for ecosystem restoration will depend on the efficacy of stored topsoil as a potential microbial inoculum as well as the subsequent generation of key microbial soil functions originally apparent in local pristine sites. Here, using both marker gene and shotgun metagenome sequencing, we show that topsoil storage and the blending of soil and waste substrates to form planting substrates gives rise to variable bacterial and archaeal phylogenetic composition but a high degree of metabolic conservation at the community metagenome level. Our data indicates that whilst low phylogenetic conservation is apparent across substrate blends we observe high functional redundancy in relation to key soil microbial pathways, allowing the potential for functional recovery of key belowground pathways under targeted management.

Original languageEnglish
Article number564
JournalScientific Reports
Issue number1
Publication statusPublished - 1 Dec 2017


Dive into the research topics of 'Microbial Functional Capacity Is Preserved Within Engineered Soil Formulations Used in Mine Site Restoration'. Together they form a unique fingerprint.

Cite this