Methods for the detection, purification and characterisation of histone H4 histidine kinase and the analysis of protein histidine phosphorylation

Xin Lin Zu

Research output: ThesisDoctoral Thesis

351 Downloads (Pure)

Abstract

[Truncated abstract] Protein phosphorylation, one of the most important forms of post-translational modification, has been demonstrated to play crucial roles in regulation of cell function. Phosphorylation of protein serine, threonine and tyrosine residues has been the most thoroughly investigated, taking advantage of the acid-stable character of these phosphohydroxyamino acids. Whereas, the cellular occurrence of acid-labile phosphoamino acids, such as phosphohistidine, phosphoarginine and phospholysine was often underestimated due to the acid treatments employed by most of the traditional phosphoamino acid analysis methods. The biological roles of histidine kinases (HKs) in prokaryotes are well understood in contrast to those of HKs in eukaryotes, especially in mammalian cells. However, the evidence has shown that phosphohistidine comprised 6% of phosphoamino acids of the basic nuclear proteins in eukaryotes (Matthews, 1995) and there was more phosphohistidine than phosphoserine in rat liver mitochondria (Bieber and Boyer, 1966). More significantly, phosphohistidine was revealed to be the major phosphoamino acid in phosphorylated histone H4 in regenerating liver in vivo (Chen et al., 1974) and the Walker-256 carcinosarcoma cells in vitro (Smith et al., 1974). Recently, the histone H4 histidine kinase (HHK) activity of human hepatocellular carcinoma (HCC) tumour tissue was measured to be 400 times higher than the normal liver tissue surrounding the tumour. HepG2 cells (HCC cell line) and PIL-2 cells (a p53 knockout mouse tumorigenic liver progenitor cell line) also displayed high HHK activity (Tan et al., 2004).
Original languageEnglish
QualificationDoctor of Philosophy
Publication statusUnpublished - 2007

Fingerprint

Dive into the research topics of 'Methods for the detection, purification and characterisation of histone H4 histidine kinase and the analysis of protein histidine phosphorylation'. Together they form a unique fingerprint.

Cite this