Metasurface-enhanced spatial mode decomposition

Aaron W. Jones, Mengyao Wang, Xuecai Zhang, Samuel J. Cooper, Shumei Chen, Conor M. Mow-Lowry, Andreas Freise

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Acquiring precise information about the mode content of a laser is critical for multiplexed optical communications, optical imaging with active wave-front control, and quantum-limited interferometric measurements. Hologram-based mode decomposition devices, such as spatial light modulators, allow a fast, direct measurement of the mode content, but they have limited precision due to cross coupling between modes. Here, we report a proof-of-principle demonstration of mode decomposition with a metasurface, resulting in significantly enhanced precision. A mode-weight fluctuation of 6×10-7 was measured with 1 s of averaging at a Fourier frequency of 80 Hz, an improvement of more than three orders of magnitude compared to the state-of-the-art spatial light modulator decomposition. The improvement is attributable to the reduction in cross coupling enabled by the exceptionally small pixel size of the metasurface. We show a systematic study of the limiting sources of noise, and we show that there is a promising path towards complete mode decomposition with similar precision.

Original languageEnglish
Article number053523
JournalPhysical Review A
Volume105
Issue number5
DOIs
Publication statusPublished - May 2022

Fingerprint

Dive into the research topics of 'Metasurface-enhanced spatial mode decomposition'. Together they form a unique fingerprint.

Cite this