TY - JOUR
T1 - Metallothionein -IIA promotes neurite growth via the megalin receptor
AU - Fitzgerald, Melinda
AU - Nairn, P.E.
AU - Bartlett, Carole
AU - Chung, R.S.
AU - West, A.K.
AU - Beazley, Lyn
PY - 2007
Y1 - 2007
N2 - Metallothionein (MT)-I/II has been shown to be neuroprotective and neuroregenerative in a model of rat cortical brain injury. Here we examine expression patterns of MT-I/II and its putative receptor megalin in rat retina. At neonatal stages, MT-I/II was present in retinal ganglion cells (RGCs) but not glial or amacrine cells; megalin was present throughout the retina. Whilst MT-I/II was absent from adult RGC in normal animals and after optic nerve transection, the constitutive megalin expression in RGCs was lost following optic nerve transection. In vitro MT-IIA treatment stimulated neuritic growth: more RGCs grew neurites longer than 25 mu m (P < 0.05) in dissociated retinal cultures and neurite extension increased in retinal explants (P < 0.05). MT-IIA treatment of mixed retinal cultures increased megalin expression in RGCs, and pre-treating cells with anti-megalin antibodies prevented MT-IIA-stimulated neurite extension. Our results indicate that MT-IIA stimulates neurite outgrowth in RGCs and may do so via the megalin receptor; we propose that neurite extension is triggered via signal transduction pathways activated by the NPxY motifs of megalin's cytoplasmic tail.
AB - Metallothionein (MT)-I/II has been shown to be neuroprotective and neuroregenerative in a model of rat cortical brain injury. Here we examine expression patterns of MT-I/II and its putative receptor megalin in rat retina. At neonatal stages, MT-I/II was present in retinal ganglion cells (RGCs) but not glial or amacrine cells; megalin was present throughout the retina. Whilst MT-I/II was absent from adult RGC in normal animals and after optic nerve transection, the constitutive megalin expression in RGCs was lost following optic nerve transection. In vitro MT-IIA treatment stimulated neuritic growth: more RGCs grew neurites longer than 25 mu m (P < 0.05) in dissociated retinal cultures and neurite extension increased in retinal explants (P < 0.05). MT-IIA treatment of mixed retinal cultures increased megalin expression in RGCs, and pre-treating cells with anti-megalin antibodies prevented MT-IIA-stimulated neurite extension. Our results indicate that MT-IIA stimulates neurite outgrowth in RGCs and may do so via the megalin receptor; we propose that neurite extension is triggered via signal transduction pathways activated by the NPxY motifs of megalin's cytoplasmic tail.
U2 - 10.1007/s00221-007-1032-y
DO - 10.1007/s00221-007-1032-y
M3 - Article
C2 - 17634932
SN - 0014-4819
VL - 183
SP - 171
EP - 180
JO - Experimental Brain Research
JF - Experimental Brain Research
IS - 2
ER -