Abstract
Vaccination against γ-herpesviruses has proved difficult. CD4+ T cells are essential to contain infection, but how best to prime them and whether this can reduce viral loads remain unclear. To address these questions, we used ovalbumin (OVA) as a model antigen, delivering it with murine cytomegalovirus (MCMV) to protect mice against OVA-expressing murine herpesvirus-4 (MuHV-4). Membrane-associated OVA (mOVA) was more effective than soluble OVA, both to prime CD4+ T cells and as an effector target. It was also a better target than an OVA epitope limited to infected cells, suggesting that protective CD4+ T cells recognize infected cell debris rather than infected cells themselves. While MCMV-mOVA protected acutely against MuHV-4-mOVA, long-term protection was incomplete, even when OVA-specific CD8+ T cells and B cells were also primed. Thus, even optimized single-target vaccines may poorly reduce long-term γ-herpesvirus infections.
Original language | English |
---|---|
Pages (from-to) | 332-343 |
Number of pages | 12 |
Journal | Immunology and Cell Biology |
Volume | 98 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2020 |