TY - JOUR
T1 - Measuring rock microstructure in hyperspectral mineral maps
AU - van Ruitenbeek, F. J.A.
AU - van der Werff, H. M.A.
AU - Bakker, W. H.
AU - van der Meer, F. D.
AU - Hein, K. A.A.
PY - 2019/1
Y1 - 2019/1
N2 - A novel method is presented to measure rock microstructure in hyperspectral mineral maps of rock specimens. Shape parameters were calculated from rock objects in segmented mineral maps. Object area, object perimeter, object hull perimeter and fitted ellipses were used to calculate shape parameters such as compactness, convexity and a cookie-cutter parameter. Shape parameters were used to describe a variety of microstructures and microstructural elements. The parameters were tested on microstructures in artificial imagery and subsequently applied to hyperspectral mineral maps of rocks. Analyses of parameters calculated on artificial imagery showed that object shapes could be measured by the flattening of fitted ellipses as a measure of sphericity and elongation, together with the cookie-cutter parameters that measured angularity. Compactness and convexity could differentiate between euhedral, subhedral and anhedral crystal shapes. Aphanitic, phaneritic and porphyritic igneous microstructures could be identified and differentiated by homogeneity and relative object size parameters. The degree of sorting of sedimentary rocks was measured by the distribution of object sizes and statistical parameters describing the distribution. Orientation of single objects was measured by the angle between the major axis of a fitted ellipse and the vertical of the image. Preferred orientations in the rock microstructure were determined by calculation of a standardized resultant of orientation vectors and a mean angle. Layering and banding of the rock was identified by the length of major axes of fitted ellipses relative to the image dimension. The shape parameters calculated on objects in segmented hyperspectral mineral maps of rock specimens were able to discriminate between sedimentary and volcanic microstructures using the size distribution of mineral objects, the presence of a preferred orientation of the rock and a layered microstructure. The volcanic microstructures could be differentiated by the size distribution of amygdales, phenocrysts and xenocrysts in the rock. Shape parameters could be used to differentiate between xenocrysts and phenocrysts, the latter being more elongated in the studied samples. The study shows that object shape parameters can be used to measure microstructure and microstructural elements in mineral maps, and subsequently discriminate between different rock types and microstructures. The expression of microstructure into numeric parameters is a first step towards quantification of microstructures in mineral maps of rocks. Further development of the methodology could contribute to the creation of unbiased classification scheme of rocks, improved statistical modeling of compositional rock parameters such as mineral ore grades, and the automated recognition of microstructures in large image databases of rocks and drill-core.
AB - A novel method is presented to measure rock microstructure in hyperspectral mineral maps of rock specimens. Shape parameters were calculated from rock objects in segmented mineral maps. Object area, object perimeter, object hull perimeter and fitted ellipses were used to calculate shape parameters such as compactness, convexity and a cookie-cutter parameter. Shape parameters were used to describe a variety of microstructures and microstructural elements. The parameters were tested on microstructures in artificial imagery and subsequently applied to hyperspectral mineral maps of rocks. Analyses of parameters calculated on artificial imagery showed that object shapes could be measured by the flattening of fitted ellipses as a measure of sphericity and elongation, together with the cookie-cutter parameters that measured angularity. Compactness and convexity could differentiate between euhedral, subhedral and anhedral crystal shapes. Aphanitic, phaneritic and porphyritic igneous microstructures could be identified and differentiated by homogeneity and relative object size parameters. The degree of sorting of sedimentary rocks was measured by the distribution of object sizes and statistical parameters describing the distribution. Orientation of single objects was measured by the angle between the major axis of a fitted ellipse and the vertical of the image. Preferred orientations in the rock microstructure were determined by calculation of a standardized resultant of orientation vectors and a mean angle. Layering and banding of the rock was identified by the length of major axes of fitted ellipses relative to the image dimension. The shape parameters calculated on objects in segmented hyperspectral mineral maps of rock specimens were able to discriminate between sedimentary and volcanic microstructures using the size distribution of mineral objects, the presence of a preferred orientation of the rock and a layered microstructure. The volcanic microstructures could be differentiated by the size distribution of amygdales, phenocrysts and xenocrysts in the rock. Shape parameters could be used to differentiate between xenocrysts and phenocrysts, the latter being more elongated in the studied samples. The study shows that object shape parameters can be used to measure microstructure and microstructural elements in mineral maps, and subsequently discriminate between different rock types and microstructures. The expression of microstructure into numeric parameters is a first step towards quantification of microstructures in mineral maps of rocks. Further development of the methodology could contribute to the creation of unbiased classification scheme of rocks, improved statistical modeling of compositional rock parameters such as mineral ore grades, and the automated recognition of microstructures in large image databases of rocks and drill-core.
KW - Geology
KW - Hyperspectral
KW - Infrared
KW - Microstructure
KW - Rock
KW - Shape
KW - Texture
UR - http://www.scopus.com/inward/record.url?scp=85055901799&partnerID=8YFLogxK
U2 - 10.1016/j.rse.2018.10.030
DO - 10.1016/j.rse.2018.10.030
M3 - Article
AN - SCOPUS:85055901799
VL - 220
SP - 94
EP - 109
JO - Remote Sensing of Environment
JF - Remote Sensing of Environment
SN - 0034-4257
ER -