TY - JOUR
T1 - Measuring and training speech-language pathologists' orofacial cueing
T2 - A pilot demonstration
AU - Namasivayam, Aravind Kumar
AU - Bali, Rohan
AU - Ward, Roslyn
AU - Tieu, Krystal Danielle
AU - Yan, Tina
AU - Hayden, Deborah
AU - Van Lieshout, Pascal
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Tactile-kinesthetic-proprioceptive (TKP) input used to facilitate speech motor control is considered an active ingredient within speech motor interventions. Objective metrics identifying skill level differences across speech-language pathologists (S-LP) providing TKP cues are crucial for monitoring treatment delivery fidelity. The study examined three kinematic measures indicating accuracy and consistency of TKP inputs by 3 S-LPs with varying experience levels (S-LP 1: novice; S-LP 2 and S-LP 3: advanced). Confidence interval measures were used to compare the accuracy of jaw movement amplitudes of the vowel /a/ made by a model participant versus S-LPs giving the TKP input. Generalised Orthogonal Procrustes Analysis (GPA) and cyclic Spatial Temporal Index (cSTI) were used to determine movement consistency. Results revealed passive jaw excursions induced by S-LP 2 and 3 to be not statistically significant from the model participant's active jaw movements. cSTI values decreased with advanced level of experience (19.28, 12.14, and 9.33 for S-LP 1, S-LP 2, and S-LP 3, respectively). GPA analyses revealed a similar pattern for S-LPs with more experience demonstrating lower mean RMS values (0.22, 0.03, and 0.11 for S-LP 1, S-LP 2, and S-LP 3, respectively). Findings suggest kinematic measures adapted from the motor control literature can be applied to assess S-LP skill differences in providing TKP cues.
AB - Tactile-kinesthetic-proprioceptive (TKP) input used to facilitate speech motor control is considered an active ingredient within speech motor interventions. Objective metrics identifying skill level differences across speech-language pathologists (S-LP) providing TKP cues are crucial for monitoring treatment delivery fidelity. The study examined three kinematic measures indicating accuracy and consistency of TKP inputs by 3 S-LPs with varying experience levels (S-LP 1: novice; S-LP 2 and S-LP 3: advanced). Confidence interval measures were used to compare the accuracy of jaw movement amplitudes of the vowel /a/ made by a model participant versus S-LPs giving the TKP input. Generalised Orthogonal Procrustes Analysis (GPA) and cyclic Spatial Temporal Index (cSTI) were used to determine movement consistency. Results revealed passive jaw excursions induced by S-LP 2 and 3 to be not statistically significant from the model participant's active jaw movements. cSTI values decreased with advanced level of experience (19.28, 12.14, and 9.33 for S-LP 1, S-LP 2, and S-LP 3, respectively). GPA analyses revealed a similar pattern for S-LPs with more experience demonstrating lower mean RMS values (0.22, 0.03, and 0.11 for S-LP 1, S-LP 2, and S-LP 3, respectively). Findings suggest kinematic measures adapted from the motor control literature can be applied to assess S-LP skill differences in providing TKP cues.
UR - http://www.scopus.com/inward/record.url?scp=85060170738&partnerID=8YFLogxK
U2 - 10.1155/2018/4323046
DO - 10.1155/2018/4323046
M3 - Article
C2 - 30687490
AN - SCOPUS:85060170738
SN - 2040-2295
VL - 2018
JO - Journal of Healthcare Engineering
JF - Journal of Healthcare Engineering
M1 - 4323046
ER -