Maximal monotone operators in Banach spaces

Balasuriya Balasuriya

Research output: ThesisMaster's Thesis

170 Downloads (Pure)

Abstract

Our aim in this research was to study monotone operators in Banach spaces. In particular, the most important concept in this theory, the maximal monotone operators. Here we make an attempt to describe most of the important results and concepts on maximal monotone operators and how they all tie together. We will take a brief look at subdifferentials, which generalize the notion of a derivative. The subdifferential is a maximal monotone operator and it has proved to be of fundamental importance for the study of maximal monotone operators. The theory of maximal monotone operators is somewhat complete in reflexive Banach spaces. However, in nonreflexive Banach spaces it is still to be developed fully. As such, here we will describe most of the important results about maximal monotone operators in Banach spaces and we will distinguish between the reflexive Banach spaces and nonreflexive Banach spaces when a property is known to hold only in reflexive Banach spaces. In the latter case, we will state what the corresponding situation is in nonreflexive Banach spaces and we will give counter examples whenever such a result is known to fail in nonreflexive Banach spaces. The representations of monotone operators by convex functions have found to be extremely useful for the study of maximal monotone operators and it has generated a lot of interest of late. We will discuss some of those key representations and their properties. We will also demonstrate how these representations could be utilized to obtain results about maximal monotone operators. We have included a discussion about the very important Rockafellar sum theorem and some its generalizations. This key result and its generalizations have only been proved in reflexive Banach spaces. We will also discuss several special cases where the Rockafellar sum theorem is known to be true in nonreflexive Banach spaces. The subclasses which provide a basis for the study of monotone operators in nonreflexive Banach spaces are also discussed here
Original languageEnglish
QualificationMasters
Publication statusUnpublished - 2004

Fingerprint

Maximal Monotone Operator
Banach space
Reflexive Banach Space
Monotone Operator
Subdifferential
Tie
Theorem
Convex function
Counterexample
Derivative
Generalise

Cite this

Balasuriya, Balasuriya. / Maximal monotone operators in Banach spaces. 2004.
@phdthesis{dc0e49ab40544e00a576dd2c4545ab5d,
title = "Maximal monotone operators in Banach spaces",
abstract = "Our aim in this research was to study monotone operators in Banach spaces. In particular, the most important concept in this theory, the maximal monotone operators. Here we make an attempt to describe most of the important results and concepts on maximal monotone operators and how they all tie together. We will take a brief look at subdifferentials, which generalize the notion of a derivative. The subdifferential is a maximal monotone operator and it has proved to be of fundamental importance for the study of maximal monotone operators. The theory of maximal monotone operators is somewhat complete in reflexive Banach spaces. However, in nonreflexive Banach spaces it is still to be developed fully. As such, here we will describe most of the important results about maximal monotone operators in Banach spaces and we will distinguish between the reflexive Banach spaces and nonreflexive Banach spaces when a property is known to hold only in reflexive Banach spaces. In the latter case, we will state what the corresponding situation is in nonreflexive Banach spaces and we will give counter examples whenever such a result is known to fail in nonreflexive Banach spaces. The representations of monotone operators by convex functions have found to be extremely useful for the study of maximal monotone operators and it has generated a lot of interest of late. We will discuss some of those key representations and their properties. We will also demonstrate how these representations could be utilized to obtain results about maximal monotone operators. We have included a discussion about the very important Rockafellar sum theorem and some its generalizations. This key result and its generalizations have only been proved in reflexive Banach spaces. We will also discuss several special cases where the Rockafellar sum theorem is known to be true in nonreflexive Banach spaces. The subclasses which provide a basis for the study of monotone operators in nonreflexive Banach spaces are also discussed here",
keywords = "Monotone operators, Banach spaces, Maximal monotone operators",
author = "Balasuriya Balasuriya",
year = "2004",
language = "English",

}

Balasuriya, B 2004, 'Maximal monotone operators in Banach spaces', Masters.

Maximal monotone operators in Banach spaces. / Balasuriya, Balasuriya.

2004.

Research output: ThesisMaster's Thesis

TY - THES

T1 - Maximal monotone operators in Banach spaces

AU - Balasuriya, Balasuriya

PY - 2004

Y1 - 2004

N2 - Our aim in this research was to study monotone operators in Banach spaces. In particular, the most important concept in this theory, the maximal monotone operators. Here we make an attempt to describe most of the important results and concepts on maximal monotone operators and how they all tie together. We will take a brief look at subdifferentials, which generalize the notion of a derivative. The subdifferential is a maximal monotone operator and it has proved to be of fundamental importance for the study of maximal monotone operators. The theory of maximal monotone operators is somewhat complete in reflexive Banach spaces. However, in nonreflexive Banach spaces it is still to be developed fully. As such, here we will describe most of the important results about maximal monotone operators in Banach spaces and we will distinguish between the reflexive Banach spaces and nonreflexive Banach spaces when a property is known to hold only in reflexive Banach spaces. In the latter case, we will state what the corresponding situation is in nonreflexive Banach spaces and we will give counter examples whenever such a result is known to fail in nonreflexive Banach spaces. The representations of monotone operators by convex functions have found to be extremely useful for the study of maximal monotone operators and it has generated a lot of interest of late. We will discuss some of those key representations and their properties. We will also demonstrate how these representations could be utilized to obtain results about maximal monotone operators. We have included a discussion about the very important Rockafellar sum theorem and some its generalizations. This key result and its generalizations have only been proved in reflexive Banach spaces. We will also discuss several special cases where the Rockafellar sum theorem is known to be true in nonreflexive Banach spaces. The subclasses which provide a basis for the study of monotone operators in nonreflexive Banach spaces are also discussed here

AB - Our aim in this research was to study monotone operators in Banach spaces. In particular, the most important concept in this theory, the maximal monotone operators. Here we make an attempt to describe most of the important results and concepts on maximal monotone operators and how they all tie together. We will take a brief look at subdifferentials, which generalize the notion of a derivative. The subdifferential is a maximal monotone operator and it has proved to be of fundamental importance for the study of maximal monotone operators. The theory of maximal monotone operators is somewhat complete in reflexive Banach spaces. However, in nonreflexive Banach spaces it is still to be developed fully. As such, here we will describe most of the important results about maximal monotone operators in Banach spaces and we will distinguish between the reflexive Banach spaces and nonreflexive Banach spaces when a property is known to hold only in reflexive Banach spaces. In the latter case, we will state what the corresponding situation is in nonreflexive Banach spaces and we will give counter examples whenever such a result is known to fail in nonreflexive Banach spaces. The representations of monotone operators by convex functions have found to be extremely useful for the study of maximal monotone operators and it has generated a lot of interest of late. We will discuss some of those key representations and their properties. We will also demonstrate how these representations could be utilized to obtain results about maximal monotone operators. We have included a discussion about the very important Rockafellar sum theorem and some its generalizations. This key result and its generalizations have only been proved in reflexive Banach spaces. We will also discuss several special cases where the Rockafellar sum theorem is known to be true in nonreflexive Banach spaces. The subclasses which provide a basis for the study of monotone operators in nonreflexive Banach spaces are also discussed here

KW - Monotone operators

KW - Banach spaces

KW - Maximal monotone operators

M3 - Master's Thesis

ER -