Machine Learning-Based Mortality Prediction of Patients at Risk During Hospital Admission

Kevin M Trentino, Karin Schwarzbauer, Andreas Mitterecker, Axel Hofmann, Adam Lloyd, Michael F Leahy, Thomas Tschoellitsch, Carl Böck, Sepp Hochreiter, Jens Meier

Research output: Contribution to journalArticlepeer-review

Abstract

OBJECTIVES: The ability to predict in-hospital mortality from data available at hospital admission would identify patients at risk and thereby assist hospital-wide patient safety initiatives. Our aim was to use modern machine learning tools to predict in-hospital mortality from standardized data sets available at hospital admission.

METHODS: This was a retrospective, observational study in 3 adult tertiary care hospitals in Western Australia between January 2008 and June 2017. Primary outcome measures were the area under the curve for the receiver operating characteristics curve, the F1 score, and the average precision of the 4 machine learning algorithms used: logistic regression, neural networks, random forests, and gradient boosting trees.

RESULTS: Using our 4 predictive models, in-hospital mortality could be predicted satisfactorily (areas under the curve for neural networks, logistic regression, random forests, and gradient boosting trees: 0.932, 0.936, 0.935, and 0.935, respectively), with moderate F1 scores: 0.378, 0.367, 0.380, and 0.380, respectively. Average precision values were 0.312, 0.321, 0.334, and 0.323, respectively. It remains unknown whether additional features might improve our models; however, this would result in additional efforts for data acquisition in daily clinical practice.

CONCLUSIONS: This study demonstrates that using only a limited, standardized data set in-hospital mortality can be predicted satisfactorily at the time point of hospital admission. More parameters describing patient's health are likely needed to improve our model.

Original languageEnglish
Pages (from-to)494-498
Number of pages5
JournalJournal of Patient Safety
Volume18
Issue number5
Early online date12 Jan 2022
DOIs
Publication statusPublished - Aug 2022

Fingerprint

Dive into the research topics of 'Machine Learning-Based Mortality Prediction of Patients at Risk During Hospital Admission'. Together they form a unique fingerprint.

Cite this