Machine learning and DFT-based combined framework for predicting transmission spectra of quantum-confined bio-molecular nanotube

Debarati Dey Roy, Pradipta Roy, Debashis De

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Context: The Adenine-based nanotube is theoretically designed, and its transmission spectra are investigated. The quantum-confined Adenine nanotube shows electronic transmission of the carrier at minimum stress. In this paper, the prediction of transmission spectra of the quantum-confined bio-molecular nanotube is investigated and deeply studied. Molecular level structure prediction and their electronic characterization can be possible with ab initio accuracy using a machine learning algorithmic approach. At the molecular level, it is difficult to predict quantum transmission spectra as these results are always hampered by the carrier backscattering effect. However, mostly these predictive models are available for intrinsic semi-conducting materials and other inorganic structures. Methods: Machine learning algorithms are designed to predict the electronic properties of the nano-scale structure. This task is even more difficult when quantum-confined molecular arrangements are considered, whose transmission spectra are sensitive to the confinements applied. This paper presents an effective machine learning algorithms framework for predicting transmission spectra of quantum-confined nanotubes from their geometries. In this paper, we consider regression machine learning algorithms to find maximum accuracy with varying configurations and geometries to excerpt their atoms’ local environment information. The Hamiltonian components are then used to enable the utilization of the information to predict the electronic structure at any arbitrary sampling point or k-point. The theoretical basics introduced in this process help to capture and incorporate minor changes in quantum confinements into transmission spectra and provide the framework algorithm with more accuracy. This paper shows the ability to predict the accurate algorithmic models of the Adenine nanotube. In this framework, we have considered a tiny data set to achieve a rapid and reliable method for electronic structure determination and also propose the best algorithm for predictive model analysis.

Original languageEnglish
Article number338
Number of pages8
JournalJournal of Molecular Modeling
Volume29
Issue number11
DOIs
Publication statusPublished - Nov 2023
Externally publishedYes

Fingerprint

Dive into the research topics of 'Machine learning and DFT-based combined framework for predicting transmission spectra of quantum-confined bio-molecular nanotube'. Together they form a unique fingerprint.

Cite this