Abstract
Luzonite, partially replaced by tennantite, was identified in dump specimens from the historic Levant Mine, west Cornwall, in a paragenetic sequence comprising early cassiterite–quartz–pyrite–arsenopyrite overprinted by Cu–Fe sulphides and followed by luzonite and tennantite. Mineral chemical data indicates the luzonite is near-end member and the tennantite is so-called Cu-excess tennantite, the implication being its Fe content (2.01–4.04 at.-%) is present entirely as Fe3+ in the sulphide lattice. Both the luzonite and its replacement product, Cu-excess tennantite, indicate that at least one hydrothermal episode in the long-lived Levant mineralising system involved influx of oxidised, high-intermediate sulphidation fluids. The presence of fine bornite and covellite lamellae in Cu-excess tennantite are interpreted to be post-depositional exsolution products. The luzonite has a sulphur isotope δ 34S of 0 ± 0.3 ‰ and it is tentatively proposed that the luzonite–tennantite depositing event represented a pulse of essentially pure magmatic-hydrothermal fluid.
Original language | English |
---|---|
Pages (from-to) | 107-113 |
Number of pages | 7 |
Journal | Applied Earth Science: Transactions of the Institute of Mining and Metallurgy |
Volume | 130 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2021 |