Low-intensity repetitive transcranial magnetic stimulation over prefrontal cortex in an animal model alters activity in the auditory thalamus but does not affect behavioural measures of tinnitus

Wilhelmina H. A. M. Mulders, K. Leggett, V. Mendis, H. Tarawneh, J. K. Wong, J. Rodger

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Tinnitus, a phantom auditory percept, is strongly associated with cochlear trauma. The latter leads to central changes in auditory pathways such as increased spontaneous activity and this may be involved in tinnitus generation. As not all people with cochlear trauma develop tinnitus, recent studies argue that non-auditory structures, such as prefrontal cortex (PFC), play an important role in tinnitus development. As part of sensory gating circuitry, PFC may modify activity in auditory thalamus and consequently in auditory cortex. Human studies suggest that repetitive transcranial magnetic stimulation (rTMS), a non-invasive tool for neurostimulation, can alter tinnitus perception. This study used a guinea pig model of hearing loss and tinnitus to investigate effects of low-intensity rTMS (LI-rTMS) over PFC on tinnitus and spontaneous activity in auditory thalamus. In addition, immunohistochemistry for calbindin and parvalbumin in PFC was used to investigate the possible mechanism of action of LI-rTMS. Three treatment groups were compared: sham treatment, LI, low frequency (1Hz) or LI, high frequency (10Hz) rTMS (10 min/day, 2 weeks, weekdays only). None of the treatments affected the behavioural measures of tinnitus but spontaneous activity was significantly increased in auditory thalamus after 1Hz and 10 Hz treatment. Immunostaining showed significant effects of rTMS on the density of calcium-binding protein expressing neurons in the dorsal regions of the PFC suggesting that rTMS treatment evoked plasticity in cortex. In addition, calbindin-positive neuron density in the superficial region of PFC was negatively correlated with spontaneous activity in auditory thalamus suggesting a possible mechanism for change in activity observed.

Original languageEnglish
Pages (from-to)883-896
Number of pages14
JournalExperimental Brain Research
Volume237
Issue number4
DOIs
Publication statusPublished - Apr 2019

Cite this