Projects per year
Abstract
We investigate reentrant and dielectric loaded cavities for the purpose of extending the range of axion cavity haloscopes to lower masses, below the range where the Axion Dark Matter experiment (ADMX) has already searched. Reentrant and dielectric loaded cavities were simulated numerically to calculate and optimize their form factors and quality factors. A prototype reentrant cavity was built and its measured properties were compared with the simulations. We estimate the sensitivity of axion dark matter searches using reentrant and dielectric loaded cavities inserted in the existing ADMX magnet at the University of Washington and a large magnet being installed at Fermilab.
Original language | English |
---|---|
Article number | 042004 |
Number of pages | 15 |
Journal | Physical Review D |
Volume | 109 |
Issue number | 4 |
DOIs | |
Publication status | Published - 16 Feb 2024 |
Fingerprint
Dive into the research topics of 'Low frequency, 100-600 MHz, searches with axion cavity haloscopes'. Together they form a unique fingerprint.-
Centre of Excellence for Dark Matter Particle Physics
Barberio, E. (Investigator 01), Williams, A. (Investigator 02), Bell, N. (Investigator 03), Stuchbery, A. (Investigator 04), Tobar, M. (Investigator 05), Boehm, C. (Investigator 06) & Wallner, A. (Investigator 07)
ARC Australian Research Council
1/01/20 → 31/12/26
Project: Research
-
ARC Centre of Excellence for Engineered Quantum Systems (EQuS 2017)
White, A. (Investigator 01), Doherty, A. (Investigator 02), Biercuk, M. (Investigator 03), Bowen, W. (Investigator 04), Milburn, G. (Investigator 05), Tobar, M. (Investigator 06), Volz, T. (Investigator 07) & McFerran, J. (Investigator 08)
ARC Australian Research Council
1/01/18 → 31/12/24
Project: Research