Loss of conserved mitochondrial CLPP and its functions lead to different phenotypes in plants and other organisms

Shaobai Huang, Jakob Petereit, Harvey Millar

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)
4 Downloads (Pure)

Abstract

Caseinolytic protease (CLPP) is an energy-dependent serine-type protease that plays a role in protein quality control. The CLPP gene is highly conserved across kingdoms and the protein is present in both bacteria and eukaryote organelles like mitochondria across a wide phylogenetic range. This pedigree has all the hallmarks of CLPP being an essential gene. However, in plants, disruption of mitochondrial CLPP has no impact on its growth, reminiscent of its nonessential role in some model fungi. Deletion of mitochondrial CLPP improves health and increased life span in the filamentous fungus, Podospora anserina, while loss of human mitochondrial CLPP leads to infertility and hearing loss. Recently it was revealed that both plant and human CLPP share a similar role in maintenance of the N-module of respiratory complex I. In addition, plant mitochondrial CLPP also coordinates the homeostasis of other mitochondrial protein complexes encoded by genes across mitochondrial and nuclear genomes. Understanding the contextual role of mitochondrial CLPP across kingdoms may help to understand these diverse sets of clpp phenotypes and the widespread conservation of CLPP genes.
Original languageEnglish
Article number1831789
JournalPlant Signalling & Behavior
Volume15
Issue number12
DOIs
Publication statusPublished - 1 Dec 2020

Fingerprint

Dive into the research topics of 'Loss of conserved mitochondrial CLPP and its functions lead to different phenotypes in plants and other organisms'. Together they form a unique fingerprint.

Cite this