Lipid Disorders and Mutations in the APOB Gene

    Research output: Contribution to journalReview articlepeer-review

    152 Citations (Scopus)


    Background: Plasma lipoproteins are important determinants of atherosclerosis. Apolipoprotein (apo) B is a large, amphipathic glycoprotein that plays a central role in human lipoprotein metabolism. Two forms of apoB are produced from the APOB gene by a unique posttranscriptional editing process: apoB-48, which is required for chylomicron production in the small intestine, and apoB-100, required for VLDL production in the liver. In addition to being the essential structural component of VLDL, apoB-100 is the ligand for LDL-receptor-mediated endocytosis of LDL particles.Content. The study of monogenic dyslipidemias has revealed important aspects of metabolic pathways. In this review, we discuss the regulation of apoB metabolism and examine how APOB gene defects can lead to both hypo- and hypercholesterolemia. The key clinical, metabolic, and genetic features of familial hypobetalipoproteinemia and familial ligand-defective apoB-100 are described.Summary: Missense mutations in the LDL-receptor-binding domain of apoB cause familial ligand-defective apoB-100, characterized by hypercholesterolemia and premature coronary artery disease. Other mutations in APOB can cause familial hypobetalipoproteinemia, characterized by hypocholesterolemia and resistance to atherosclerosis. These naturally occurring mutations reveal key domains in apoB and demonstrate how monogenic dyslipidemias can provide insight into biologically important mechanisms. (C) 2004 American Association for Clinical Chemistry
    Original languageEnglish
    Pages (from-to)1725-1732
    JournalClinical Chemistry
    Issue number10
    Publication statusPublished - 2004


    Dive into the research topics of 'Lipid Disorders and Mutations in the APOB Gene'. Together they form a unique fingerprint.

    Cite this