TY - JOUR
T1 - Linking leaf veins to growth and mortality rates: an example from a subtropical tree community
AU - Iida, Y.
AU - Sun, I.F.
AU - Price, Charles A.
AU - Chen, C.T.
AU - Chen, Z.S.
AU - Chiang, J.M.
AU - Huang, C.L.
AU - Swenson, N.G.
PY - 2016/9/1
Y1 - 2016/9/1
N2 - © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.A fundamental goal in ecology is to link variation in species function to performance, but functional trait–performance investigations have had mixed success. This indicates that less commonly measured functional traits may more clearly elucidate trait–performance relationships. Despite the potential importance of leaf vein traits, which are expected to be related to resource delivery rates and photosynthetic capacity, there are few studies, which examine associations between these traits and demographic performance in communities. Here, we examined the associations between species traits including leaf venation traits and demographic rates (Relative Growth Rate, RGR and mortality) as well as the spatial distributions of traits along soil environment for 54 co-occurring species in a subtropical forest. Size-related changes in demographic rates were estimated using a hierarchical Bayesian approach. Next, Kendall's rank correlations were quantified between traits and estimated demographic rates at a given size and between traits and species-average soil environment. Species with denser venation, smaller areoles, less succulent, or thinner leaves showed higher RGR for a wide range of size classes. Species with leaves of denser veins, larger area, cheaper construction costs or thinner, or low-density wood were associated with high mortality rates only in small size classes. Lastly, contrary to our expectations, acquisitive traits were not related to resource-rich edaphic conditions. This study shows that leaf vein traits are weakly, but significantly related to tree demographic performance together with other species traits. Because leaf traits associated with an acquisitive strategy such as denser venation, less succulence, and thinner leaves showed higher growth rate, but similar leaf traits were not associated with mortality, different pathways may shape species growth and survival. This study suggests that we are still not measuring some
AB - © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.A fundamental goal in ecology is to link variation in species function to performance, but functional trait–performance investigations have had mixed success. This indicates that less commonly measured functional traits may more clearly elucidate trait–performance relationships. Despite the potential importance of leaf vein traits, which are expected to be related to resource delivery rates and photosynthetic capacity, there are few studies, which examine associations between these traits and demographic performance in communities. Here, we examined the associations between species traits including leaf venation traits and demographic rates (Relative Growth Rate, RGR and mortality) as well as the spatial distributions of traits along soil environment for 54 co-occurring species in a subtropical forest. Size-related changes in demographic rates were estimated using a hierarchical Bayesian approach. Next, Kendall's rank correlations were quantified between traits and estimated demographic rates at a given size and between traits and species-average soil environment. Species with denser venation, smaller areoles, less succulent, or thinner leaves showed higher RGR for a wide range of size classes. Species with leaves of denser veins, larger area, cheaper construction costs or thinner, or low-density wood were associated with high mortality rates only in small size classes. Lastly, contrary to our expectations, acquisitive traits were not related to resource-rich edaphic conditions. This study shows that leaf vein traits are weakly, but significantly related to tree demographic performance together with other species traits. Because leaf traits associated with an acquisitive strategy such as denser venation, less succulence, and thinner leaves showed higher growth rate, but similar leaf traits were not associated with mortality, different pathways may shape species growth and survival. This study suggests that we are still not measuring some
U2 - 10.1002/ece3.2311
DO - 10.1002/ece3.2311
M3 - Article
C2 - 27648227
SN - 2045-7758
VL - 6
SP - 6085
EP - 6096
JO - Ecology and Evolution
JF - Ecology and Evolution
IS - 17
ER -