Projects per year
Abstract
Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame.
| Original language | English |
|---|---|
| Article number | 126005 |
| Journal | Journal of Biomedical Optics |
| Volume | 22 |
| Issue number | 12 |
| DOIs | |
| Publication status | Published - 1 Dec 2017 |
Fingerprint
Dive into the research topics of 'Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography'. Together they form a unique fingerprint.Projects
- 1 Curtailed
-
Quantitative multi-modal optical imaging of deep tissue
McLaughlin, R. (Investigator 01) & Wilson, B. (Investigator 02)
Australian Research Council ARC
1/01/15 → 30/12/19
Project: Research