Linear bounds for the normal covering number of the symmetric and alternating groups

Daniela Bubboloni, Cheryl E. Praeger, Pablo Spiga

Research output: Contribution to journalArticle

Abstract

The normal covering number γ(G) of a finite, non-cyclic group G is the minimum number of proper subgroups such that each element of G lies in some conjugate of one of these subgroups. We find lower bounds linear in n for γ(S n ) , when n is even, and for γ(A n ) , when n is odd.

Original languageEnglish
Number of pages19
JournalMonatshefte fur Mathematik
DOIs
Publication statusE-pub ahead of print - 20 Mar 2019

Fingerprint

Normal number
Covering number
Alternating group
Symmetric group
Subgroup
Odd
Lower bound

Cite this

@article{fbf8542d35644d3ea656f867a7b94224,
title = "Linear bounds for the normal covering number of the symmetric and alternating groups",
abstract = "The normal covering number γ(G) of a finite, non-cyclic group G is the minimum number of proper subgroups such that each element of G lies in some conjugate of one of these subgroups. We find lower bounds linear in n for γ(S n ) , when n is even, and for γ(A n ) , when n is odd.",
keywords = "Conjugacy classes, Normal coverings, Partitions, Symmetric groups",
author = "Daniela Bubboloni and Praeger, {Cheryl E.} and Pablo Spiga",
year = "2019",
month = "3",
day = "20",
doi = "10.1007/s00605-019-01287-5",
language = "English",
journal = "MONATSHEFTE F{\"U}R MATHEMATIK",
issn = "0026-9255",
publisher = "Springer",

}

Linear bounds for the normal covering number of the symmetric and alternating groups. / Bubboloni, Daniela; Praeger, Cheryl E.; Spiga, Pablo.

In: Monatshefte fur Mathematik, 20.03.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Linear bounds for the normal covering number of the symmetric and alternating groups

AU - Bubboloni, Daniela

AU - Praeger, Cheryl E.

AU - Spiga, Pablo

PY - 2019/3/20

Y1 - 2019/3/20

N2 - The normal covering number γ(G) of a finite, non-cyclic group G is the minimum number of proper subgroups such that each element of G lies in some conjugate of one of these subgroups. We find lower bounds linear in n for γ(S n ) , when n is even, and for γ(A n ) , when n is odd.

AB - The normal covering number γ(G) of a finite, non-cyclic group G is the minimum number of proper subgroups such that each element of G lies in some conjugate of one of these subgroups. We find lower bounds linear in n for γ(S n ) , when n is even, and for γ(A n ) , when n is odd.

KW - Conjugacy classes

KW - Normal coverings

KW - Partitions

KW - Symmetric groups

UR - http://www.scopus.com/inward/record.url?scp=85063228864&partnerID=8YFLogxK

U2 - 10.1007/s00605-019-01287-5

DO - 10.1007/s00605-019-01287-5

M3 - Article

JO - MONATSHEFTE FÜR MATHEMATIK

JF - MONATSHEFTE FÜR MATHEMATIK

SN - 0026-9255

ER -