TY - JOUR
T1 - Li/Mg systematics in scleractinian corals: Calibration of the thermometer
AU - Montagna, P.
AU - Mcculloch, Malcolm
AU - Douville, E.
AU - López Correa, M.
AU - Trotter, Julie
AU - Rodolfo-Metalpa, R.
AU - Dissard, Delphine
AU - Ferrier-Pagès, C.
AU - Frank, N.
AU - Freiwald, A.
AU - Goldstein, S.L.
AU - Mazzoli, C.
AU - Reynaud, S.
AU - Rüggeberg, A.
AU - Russo, S.
AU - Taviani, M.
PY - 2014
Y1 - 2014
N2 - We show that the Li/Mg systematics of a large suite of aragonitic coral skeletons, representing a wide range of species inhabiting disparate environments, provides a robust proxy for ambient seawater temperature. The corals encompass both zooxanthellate and azooxanthellate species (Acropora sp., Porites sp., Cladocora caespitosa, Lophelia pertusa, Madrepora oculata and Flabellum impensum) collected from shallow, intermediate, and deep-water habitats, as well as specimens cultured in tanks under temperature-controlled conditions. The Li/Mg ratios observed in corals from these diverse tropical, temperate, and deep-water environments are shown to be highly correlated with temperature, giving an exponential temperature relationship of: Li/Mg (mmol/mol)=5.41 exp (-0.049*T) (r2=0.975, n=49). Based on the standard error of the Li/Mg versus temperature correlation, we obtain a typical precision of ±0.9°C for the wide range of species analysed, similar or better than that of other less robust coral temperature proxies such as Sr/Ca ratios.The robustness and species independent character of the Li/Mg temperature proxy is shown to be the result of the normalization of Li to Mg, effectively eliminating the precipitation efficiency component such that temperature remains as the main controller of coral Li/Mg compositions. This is inferred from analysis of corresponding Li/Ca and Mg/Ca ratios with both ratios showing strong microstructure-related co-variations between the fibrous aragonite and centres of calcification, a characteristic that we attribute to varying physiological controls on growth rate. Furthermore, Li/Ca ratios show an offset between more rapidly growing zooxanthellate and azooxanthellate corals, and hence only an approximately inverse relationship to seawater temperature. Mg/Ca ratios show very strong physiological controls on growth rate but no significant dependence with temperature, except possibly for Acropora sp. and Porites sp. A strong positive correlation is nevertheless found between Li/Ca and Mg/Ca ratios at similar temperatures, indicating that both Li and Mg are subject to control by similar growth mechanisms, specifically the mass fraction of aragonite precipitated during calcification, which is shown to be consistent with a Rayleigh-based elemental fractionation model.The highly coherent array defined by Li/Mg versus temperature is thus largely independent of coral calcification mechanisms, with the strong temperature dependence reflecting the greater sensitivity of the Kd Li/Ca partition coefficient relative to Kd Mg/Ca. Accordingly, Li/Mg ratios exhibit a highly coherent exponential correlation with temperature, thereby providing a more robust tool for reconstructing paleo-seawater temperatures. © 2014 Elsevier Ltd.
AB - We show that the Li/Mg systematics of a large suite of aragonitic coral skeletons, representing a wide range of species inhabiting disparate environments, provides a robust proxy for ambient seawater temperature. The corals encompass both zooxanthellate and azooxanthellate species (Acropora sp., Porites sp., Cladocora caespitosa, Lophelia pertusa, Madrepora oculata and Flabellum impensum) collected from shallow, intermediate, and deep-water habitats, as well as specimens cultured in tanks under temperature-controlled conditions. The Li/Mg ratios observed in corals from these diverse tropical, temperate, and deep-water environments are shown to be highly correlated with temperature, giving an exponential temperature relationship of: Li/Mg (mmol/mol)=5.41 exp (-0.049*T) (r2=0.975, n=49). Based on the standard error of the Li/Mg versus temperature correlation, we obtain a typical precision of ±0.9°C for the wide range of species analysed, similar or better than that of other less robust coral temperature proxies such as Sr/Ca ratios.The robustness and species independent character of the Li/Mg temperature proxy is shown to be the result of the normalization of Li to Mg, effectively eliminating the precipitation efficiency component such that temperature remains as the main controller of coral Li/Mg compositions. This is inferred from analysis of corresponding Li/Ca and Mg/Ca ratios with both ratios showing strong microstructure-related co-variations between the fibrous aragonite and centres of calcification, a characteristic that we attribute to varying physiological controls on growth rate. Furthermore, Li/Ca ratios show an offset between more rapidly growing zooxanthellate and azooxanthellate corals, and hence only an approximately inverse relationship to seawater temperature. Mg/Ca ratios show very strong physiological controls on growth rate but no significant dependence with temperature, except possibly for Acropora sp. and Porites sp. A strong positive correlation is nevertheless found between Li/Ca and Mg/Ca ratios at similar temperatures, indicating that both Li and Mg are subject to control by similar growth mechanisms, specifically the mass fraction of aragonite precipitated during calcification, which is shown to be consistent with a Rayleigh-based elemental fractionation model.The highly coherent array defined by Li/Mg versus temperature is thus largely independent of coral calcification mechanisms, with the strong temperature dependence reflecting the greater sensitivity of the Kd Li/Ca partition coefficient relative to Kd Mg/Ca. Accordingly, Li/Mg ratios exhibit a highly coherent exponential correlation with temperature, thereby providing a more robust tool for reconstructing paleo-seawater temperatures. © 2014 Elsevier Ltd.
U2 - 10.1016/j.gca.2014.02.005
DO - 10.1016/j.gca.2014.02.005
M3 - Article
SN - 0016-7037
VL - 132
SP - 288
EP - 310
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
ER -