TY - JOUR
T1 - LIMA U-Pb ages link lithospheric mantle metasomatism to Karoo magmatism beneath the Kimberley region, South Africa
AU - Giuliani, A.
AU - Phillips, D.
AU - Maas, R.
AU - Woodhead, J.D.
AU - Kendrick, M.A.
AU - Greig, A.
AU - Armstrong, R.A.
AU - Chew, D.M.
AU - Kamenetsky, V.S.
AU - Fiorentini, Marco
PY - 2014
Y1 - 2014
N2 - The Karoo igneous rocks (174-185 Ma) of southern Africa represent one of the largest continental flood basalt provinces on Earth. Available evidence indicates that Karoo magmas either originated in the asthenosphere and were extensively modified by interaction with the lithospheric mantle prior to emplacement in the upper crust; or were produced by partial melting of enriched mantle lithosphere. However, no direct evidence of interaction by Karoo melts (or their precursors) with lithospheric mantle rocks has yet been identified in the suites of mantle xenoliths sampled by post-Karoo kimberlites in southern Africa. Here we report U-Pb ages for lindsleyite-mathiasite (LIMA) titanate minerals (crichtonite series) from three metasomatised, phlogopite and clinopyroxene-rich peridotite xenoliths from the ~84 Ma Bultfontein kimberlite (Kimberley, South Africa), located in the southern part of the Karoo magmatic province. The LIMA minerals appear to have formed during metasomatism of the lithospheric mantle by fluids enriched in HFSE (Ti, Zr, Hf, Nb), LILE (K, Ba, Ca, Sr) and LREE. LIMA U-Pb elemental and isotopic compositions were measured in situ by LA-ICP-MS methods, and potential matrix effects were evaluated by solution-mode analysis of mineral separates. LIMA minerals from the three samples yielded apparent U-Pb ages of 177 ± 12 Ma, 178 ± 29 Ma and 190 ± 24 Ma (±2σ). A single zircon grain extracted from the ~190 Ma LIMA-bearing sample produced a similar U-Pb age of 184 ± 6 Ma, within uncertainty of the LIMA ages. These data provide the first robust evidence of fluid enrichment in the lithospheric mantle beneath the Kimberley region at ~180-190 Ma, and suggest causation of mantle metasomatism by Karoo melts or their precursor(s). The results further indicate that U-Pb dating of LIMA minerals provides a new, accurate tool for dating metasomatic events in the lithospheric mantle. © 2014 Elsevier B.V.
AB - The Karoo igneous rocks (174-185 Ma) of southern Africa represent one of the largest continental flood basalt provinces on Earth. Available evidence indicates that Karoo magmas either originated in the asthenosphere and were extensively modified by interaction with the lithospheric mantle prior to emplacement in the upper crust; or were produced by partial melting of enriched mantle lithosphere. However, no direct evidence of interaction by Karoo melts (or their precursors) with lithospheric mantle rocks has yet been identified in the suites of mantle xenoliths sampled by post-Karoo kimberlites in southern Africa. Here we report U-Pb ages for lindsleyite-mathiasite (LIMA) titanate minerals (crichtonite series) from three metasomatised, phlogopite and clinopyroxene-rich peridotite xenoliths from the ~84 Ma Bultfontein kimberlite (Kimberley, South Africa), located in the southern part of the Karoo magmatic province. The LIMA minerals appear to have formed during metasomatism of the lithospheric mantle by fluids enriched in HFSE (Ti, Zr, Hf, Nb), LILE (K, Ba, Ca, Sr) and LREE. LIMA U-Pb elemental and isotopic compositions were measured in situ by LA-ICP-MS methods, and potential matrix effects were evaluated by solution-mode analysis of mineral separates. LIMA minerals from the three samples yielded apparent U-Pb ages of 177 ± 12 Ma, 178 ± 29 Ma and 190 ± 24 Ma (±2σ). A single zircon grain extracted from the ~190 Ma LIMA-bearing sample produced a similar U-Pb age of 184 ± 6 Ma, within uncertainty of the LIMA ages. These data provide the first robust evidence of fluid enrichment in the lithospheric mantle beneath the Kimberley region at ~180-190 Ma, and suggest causation of mantle metasomatism by Karoo melts or their precursor(s). The results further indicate that U-Pb dating of LIMA minerals provides a new, accurate tool for dating metasomatic events in the lithospheric mantle. © 2014 Elsevier B.V.
U2 - 10.1016/j.epsl.2014.05.044
DO - 10.1016/j.epsl.2014.05.044
M3 - Article
SN - 0012-821X
VL - 401
SP - 132
EP - 147
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
ER -